Skip to main content
Log in

Thermal stability assessment of 4,4′-azo-bis(1,2,4-triazolone) (ZTO) and its salts by accelerating rate calorimeter (ARC)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition behaviors of 4,4′-azo-bis(1,2,4-triazolone) (ZTO) and its salts were investigated for the first time by using accelerating rate calorimetry. Based on the experimental results, the kinetic parameters of exothermic reaction of ZTO and its salts were calculated. The thermal decomposition parameters, including the initial decomposition temperature, the adiabatic temperature rise rate, were obtained from the thermal inertia factor. The adiabatic experiment revealed that ZTO and KZTO·H2O both had a relatively high initial exothermic decomposition temperature at 230.6 and 235.6 °C, respectively. The maximum self-heating rate of exothermic process of ZTO was 105.9 °C min−1 (at 248.7 °C), which meant that ZTO decomposed very fast. In addition, the reaction order, apparent activated energy (E a), and pre-exponential factor (A) were also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Φ :

Thermal inertia factor

T 0/°C:

Initial self-heat temperature

T f/°C:

Final decomposition temperature

T ad/°C:

Adiabatic temperature rise

m 0/°C min−1 :

Initial temperature rise rate

m m/°C min−1 :

Maximum temperature rise rate

T m/°C:

Temperature of maximum temperature rise rate

θ m/min:

Time of maximum temperature rise rate

E a/kJ mol−1 :

The apparent activation energy

R :

The gas constant

A :

Pre-exponential factor

r :

Correlation coefficient

References

  1. Gao HX, Shreeve JM. Azole-based energetic salts. Chem Rev. 2011;111(11):7377–436.

    Article  CAS  Google Scholar 

  2. Zhang QH, Shreeve JM. Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. Chem Rev. 2014;114(20):10527–74.

    Article  CAS  Google Scholar 

  3. Dippold AA, Klapötke TM. A study of dinitro-bis-1,2,4-triazole-1,1′-diol and derivatives: design of high-performance insensitive energetic materials by the introduction of N-Oxides. J Am Chem Soc. 2013;135(26):9931–8.

    Article  CAS  Google Scholar 

  4. Zhu JP, Jin SH, Wan L, Zhang CY, Li LJ, Chen SS, Shu QH. Nitrogen-rich 4,4′-azobis(1,2,4-triazolone) salts—the synthesis and promising properties of a new family of high-density insensitive materials. Dalton Trans. 2016;45:3590–8.

    Article  CAS  Google Scholar 

  5. Ma C, Huang J, Ma HX, Xu KZ, Lv XQ, Song JR, Zhao NN, He JY, Zhao YS. Preparation, crystal structure, thermal decomposition, quantum chemical calculations on [K(ZTO)·H2O] and its ligand ZTO. J Mole Struct. 2013;1036:521–7.

    Article  CAS  Google Scholar 

  6. Zhu JP, Jin SH, Yu YH, Li LJ, Chen SS, Shu QH. The crystal structure and thermal analysis of ZTO and its solvent adducts. Res Chem Intermed. 2016;42(5):4333–40.

    Article  CAS  Google Scholar 

  7. Zhu JP, Jin SH, Yu YH, Wan L, Li LJ, Chen SS, Shu QH. Preparation, crystal structure, thermal behavior, and theoretical studies of N,N′-dinitro-4,4′-azo-bis(1,2,4-triazolone) (DNZTO). Z Naturforsch. 2016;71(3b):197–204.

    CAS  Google Scholar 

  8. Zhu JP, Jin SH, Yu YH, Zhang CY, Li LLJ, Chen SS, Shu QH. Evaluation of thermal hazards and thermo-kinetic parameters of N,N’-dinitro-4,4′-azo-Bis(1,2,4-triazolone) (DNZTO). Thermochim Acta. 2016;623:58–64.

    Article  CAS  Google Scholar 

  9. Zhong YT, Huang J, Song JR, Xu KZ, Zhao D, Wang LQ, Zhang XY. Synthesis, crystal structure and thermal behavior of GZTO·H2O. Chin J Chem. 2011;29(8):1672–6.

    Article  CAS  Google Scholar 

  10. Iwata Y, Momota M, Koseki H. Thermal risk evaluation of organic peroxide by automatic pressure tracking adiabatic calorimeter. J Therm Anal Calorim. 2006;85:617–22.

    Article  CAS  Google Scholar 

  11. Sridhar VP, Surianarayanan M, Sivapirakasam SP, Mandal AB. Adiabatic thermokinetics and process safety of pyrotechnic mixtures. J Therm Anal Calorim. 2012;109:1387–95.

    Article  Google Scholar 

  12. Sivapirakasam SP, Mohamed NM, Surianarayanan M, Sridhar VP. Evaluation of thermal hazards and thermo-kinetic parameters of a matchhead composition by DSC and ARC. Thermochim Acta. 2013;557:13–9.

    Article  CAS  Google Scholar 

  13. Zhang GY, Jin SH, Li LJ, Li YK, Wang DQ, Li W, Zhang T, Shu QH. Thermal hazard assessment of 4,10-dinitro-2,6,8, 12-tetraoxa-4,10-diazaisowutrzitane (TEX) by accelerating rate calorimeter (ARC). J Therm Anal Calorim. 2016;126:467–71.

    Article  CAS  Google Scholar 

  14. Sivapirakasam SP, Surianarayanan M, Vijayaraghavan R. Thermal characterization and kinetic modeling of a pyrotechnic flash composition under adiabatic conditions. J Pyrotech. 2006;23:61–6.

    CAS  Google Scholar 

  15. Surianarayanan M, Sivapirakasam SP, Swaminathan G. Accident data analysis and hazard assessment in fireworks manufacture. Sci Technol Energ Mater. 2008;69(5):161–8.

    CAS  Google Scholar 

  16. Lv JY, Chen WH, Chen LP, Tian YT, Yan JJ. Thermal risk evaluation on decomposition processes for four organic peroxides. Thermochim Acta. 2014;589:11–8.

    Article  CAS  Google Scholar 

  17. Yang T, Chen LP, Chen WH, Zhou YS, Gao HS, Zhong TT. Thermal stability of 2-ethylhexyl nitrate with acid. J Therm Anal Calorim. 2015;119:205–12.

    Article  CAS  Google Scholar 

  18. Lu KT, Yang CC, Lin PC. The criteria of critical runaway and stable temperatures of catalytic decomposition of hydrogen peroxide in the presence of hydrochloric acid. J Hazard Mater. 2006;135:319–27.

    Article  CAS  Google Scholar 

  19. Fu ZM, Koseki H, Iwata Y. Investigation on thermal stability of flavianic acid disodium salt. J Loss Prevent Proc. 2009;22:477–83.

    Article  CAS  Google Scholar 

  20. Townsend DI, Tou JC. Thermal hazard evaluation by an accelerating rate calorimeter. Thermochim Acta. 1980;37:1–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by Natural Science Foundation of Guangdong (Grant Nos. 2014A030313559, 2016A030313050), the Nanshan District Key Lab for Biopolymers and Safety Evaluation (No. KC2014ZDZJ0001A), and the Science and Technology Project of Shenzhen City (Grant Nos. JCYJ20140828163633993, CYZZ20150827160341635, ZDSYS201507141105130, and JCYJ20170412105034748). We are indebted to Dr. Zhang Guangyuan who works in Gansu Yinguang Chem Ind Grp Co., Ltd., for considerable assistance with ARC testing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xierong Zeng or Shaojun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Jin, S., Cheng, B. et al. Thermal stability assessment of 4,4′-azo-bis(1,2,4-triazolone) (ZTO) and its salts by accelerating rate calorimeter (ARC). J Therm Anal Calorim 132, 563–569 (2018). https://doi.org/10.1007/s10973-017-6896-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6896-x

Keywords

Navigation