Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 2, pp 1115–1120 | Cite as

Thermodynamic study of antimony chalcoiodides by EMF method with an ionic liquid

  • Ziya Sakhaveddin Aliev
  • Sabina Sahib Musayeva
  • Samira Zakir Imamaliyeva
  • Mahammad Baba Babanly
Article

Abstract

Thermodynamic properties of antimony chalcoiodides have been determined experimentally by means of electromotive force (EMF) method measurements of the
$$(- )\;{\text{Sb}}\;({\text{solid}}) / {\text{ionic}}\;{\text{liquid}},{\text{ Sb}}^{3 + } /\left( {{\text{SbXI}} - {\text{SbI}}_{3} - {\text{X}}} \right)\;({\text{solid}})\;( + )$$
concentration chains within temperature range 300–430 K (X–S, Se, Te). A mixture of morpholine and formic acid with adding 0.5 mol% anhydrous SbCl3 was used as an electrolyte, whereas equilibrium alloys from the SbXI–SbI3–X three-phase regions of the corresponding systems were exploited as right electrodes. From the EMF measurements, the partial molar functions of antimony in the SbXI–SbI3–I three-phase regions are calculated. The potential formation reactions were determined based on the solid-phase equilibria diagrams of the Sb–X–I systems, and the standard thermodynamic functions of formation and standard entropies of the ternary compounds SbSI, SbSeI, and SbTeI were calculated. For the calculations, the standard thermodynamic functions of SbI3, as well as standard entropies of chalcogens, were used.

Keywords

Antimony chalcogen iodides Electromotive force method Thermodynamic functions, SbSI, SbSeI, SbTeI 

Notes

Acknowledgements

The work has been carried out within the framework of the international joint research laboratory “Advanced Materials for Spintronics and Quantum Computing” (AMSQC) established between Institute of Catalysis and Inorganic Chemistry of ANAS (Azerbaijan) and Donostia International Physics Center (Basque Country, Spain).

References

  1. 1.
    Gerzanich EI, Fridkin VM. Ferroelectric materials of type AVBVICVII. Moscow: Nauka; 1982.Google Scholar
  2. 2.
    Audzijonis A, Sereika R, Žigas L, Žaltauskas R. Dielectric and electrical properties of SbSI and SbSeI single crystals in the region of antiferroelectric phase transition. J Phys Chem Sol. 2015;83:117–20.CrossRefGoogle Scholar
  3. 3.
    Nowak M, Nowrot A, Szperlich P, Jesionek M. Fabrication and characterization of SbSI gel for humidity sensors. Sens Actuators A. 2014;210:119–30.CrossRefGoogle Scholar
  4. 4.
    Kepinska M, Starczewska A, Duka P, Nowak M, Szperlich P. Optical properties of SbSI photonic crystals. Acta Phys Pol A. 2014;126:1115–7.CrossRefGoogle Scholar
  5. 5.
    Butler KT, McKechnie S, Azarhoosh P, Schilfgaarde M, Scanlon DO, Walsh A. Quasi-particle electronic band structure and alignment of the V–VI–VII semiconductors SbSI, SbSBr, and SbSeI for solar cells. Appl Phys Lett. 2016;108:112103.CrossRefGoogle Scholar
  6. 6.
    Sebastian M, Chung DJ, Wessels BW, Kanatzidis MG. Photoconductivity in the chalcohalide semiconductor, SbSeI: a new candidate for hard radiation detection. Inorg Chem. 2013;52:7045–50.CrossRefPubMedGoogle Scholar
  7. 7.
    Dubey HK, Deshmukh LP, Kshirsagar DE, Sharon M, Sharon M. Synthesis and study of electrical properties of SbTeI. Adv Phys Chem. 2014;1:1–6.CrossRefGoogle Scholar
  8. 8.
    Ganose AM, Butler KT, Walsh A, Scanlon DO. Relativistic electronic structure and band alignment of BiSI and BiSeI: candidate photovoltaic materials. J Mater Chem A. 2016;4:2060–8.CrossRefGoogle Scholar
  9. 9.
    Landolt G, Eremeev SV, Koroteev YM, Slomski B, Muff S, Neupert T, Kobayashi M, Stroco VN, Schmitt T, Aliev ZS, Babanly MB, Amiraslanov IR, Chulkov E, Osterwalder J, Dil JH. Disentaglement of surface and bulk Rashba spin splitting in noncentrosymmetric BiTeI. Phys Rev Lett. 2012;109:116403–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Rusinov IP, Menshchikova TV, Isaeva A, Eremeev SV, Koroteev YM, Vergniory MG, Echenique PM, Chulkov EV. Mirror-symmetry protected non-TRIM surface state in the weak topological insulator Bi2TeI. Sci Rep. 2016;6:20734.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ryazancev AA, Varekha LM, Popovkin LM, Lyahovickaya VA, Novoselova AV. P–T–x phase diagram of the SbI3–Sb2S3 system. Inorg Mater. 1969;5:2196–7.Google Scholar
  12. 12.
    Dolgih VA, Popovkin BA, Odin IN, Novoselova AV. P–T–x-phase diagram of the Sb2Se3–SbI3 system. Inorg Mater. 1973;9:919–22.Google Scholar
  13. 13.
    Aleshin VA, Valitova NR, Popovkin BA, Novoselova AV. P–T–x phase diagram of the Sb2Te3–SbI3 system. Russ J Phys Chem. 1974;48:2395.Google Scholar
  14. 14.
    Ryazantsev TA, Varekha LM, Popovkin BA, Novoselova AV. P–T–x phase diagram of the BiI3–Bi2S3 system. Inorg Mater. 1970;6:1175–9.Google Scholar
  15. 15.
    Valitova NR, Aleshin VA, Popovkin BA, Novoselova AV. P–T–x phase diagram of bismuth iodide- bismuth telluride system. Inorg Mater. 1976;12:225–8.Google Scholar
  16. 16.
    Tomokiyo A, Okada T, Kawano S. Phase diagram of system (Bi2Te3)–(BiI3) and crystal structure of BiTeI. Jpn J Appl Phys. 1977;16:291–8.CrossRefGoogle Scholar
  17. 17.
    Belockij DP, Lapshin VF, Bojchuk RF. BiI3–Bi2Se3 system. Inorg Mater. 1971;7:1936–8.Google Scholar
  18. 18.
    Belockij DP, Dremlyuzhenko SG, Kulikovskaya SM, Chervenyuk GI. Phase equilibria in the Bi–Se–I system. Ukr Chem J. 2000;66:24–7.Google Scholar
  19. 19.
    Babanly MB, Aliyev ZS, Musaeva SS, Babanly DM, Shevelkov AV. Phase diagram of the Sb–Se–I system and thermodynamic properties of SbSeI. J Alloys Compd. 2010;505:450–5.CrossRefGoogle Scholar
  20. 20.
    Aliyev ZS, Babanly MB, Shevelkov AV, Babanly DM, Tedenac J-C. Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI. Int J Mater Res. 2012;103:290–5.CrossRefGoogle Scholar
  21. 21.
    Babanly MB, Tedenac J-C, Aliev ZS, Balitsky DM. Phase equilibriums and thermodynamic properties of the system Bi–Te–I. J Alloys Compd. 2009;481:349–53.CrossRefGoogle Scholar
  22. 22.
    Aliev ZS, Musayeva SS, Jafarli FY, Amiraslanov IR, Shevelkov AV, Babanly MB. The phase equilibria in the Bi–S–I ternary system and thermodynamic properties of the BiSI and Bi19S27I3 ternary compounds. J Alloys Compd. 2014;610:522–8.CrossRefGoogle Scholar
  23. 23.
    Matskevich NI, Wolf Th, Pischur D, Kozlova SG. The heat capacity and thermodynamic functions of Bi12.5Lu1.5ReO24.5 in the temperature range of 175–550 K. J Therm Anal Calorim. 2016;124:1745–8.CrossRefGoogle Scholar
  24. 24.
    Petkov VI, Asabina EA, Markin AV, Alekseev AA, Smirnova NN. Thermodynamic investigation of Rb2FeTi(PO4)3 phosphate of langbeinite structure. J Therm Anal Calorim. 2016;124:1535–44.CrossRefGoogle Scholar
  25. 25.
    Wagner C. Thermodynamics of alloys. Reading: Addison-Wesley; 1952.Google Scholar
  26. 26.
    Morachevskii AG, Voronin GF, Kutsenok IB. Electrochemical research methods in thermodynamics of metallic systems. Moscow: Akademkniga; 2003.Google Scholar
  27. 27.
    Babanly MB, Yusibov Y. Electrochemical methods in thermodynamics of inorganic systems. Baku: Elm; 2011.Google Scholar
  28. 28.
    Babanly MB, Mashadieva LF, Aliev ZS, Shevelkov AV, Yusibov YA. Phase diagram and thermodynamic properties of compounds of the AgI–TlI–I system. J Alloys Compd. 2012;524:38–45.CrossRefGoogle Scholar
  29. 29.
    Jafarov YI, Ismaylova SA, Aliev ZS, Imamaliyeva SZ, Yusibov YA, Babanly MB. Experimental study of the phase diagram and thermodynamic properties of the Tl–Sb–S system. Calphad. 2016;55:231–7.CrossRefGoogle Scholar
  30. 30.
    Nesmeyanov AN. Vapor pressure of the chemical elements. Amsterdam: Elsevier; 1963.Google Scholar
  31. 31.
    Kornilov AN, Stepina LB, Sokolov VA. The recommendation for the compact form of presents of experimental data at the publication of results of thermochemical and thermodynamic investigations. Russ J Phys Chem. 1972;46:2975–9.Google Scholar
  32. 32.
    Doerffel K. Statistik in der Analytischen Chemie. Leipzig: Grundstoffindustrie; 1990.Google Scholar
  33. 33.
    Kubaschewski O, Alcock CB, Spencer PJ. Materials thermochemistry. Oxford: Pergamon Press; 1993.Google Scholar
  34. 34.
    Iorish VS, Yungman VS (eds). Data base of thermal constants of substances. Digital version; 2006. http://www.chem.msu.ru/cgi-bin/tkv.pl.
  35. 35.
    Lazarev VB, Greenberg JH, Popovkin BA. Investigation of deviation from stoichiometry by vapor pressure measurement. In: Kaldis E, editor. Current topics in materials science, vol. 1. Amsterdam: North Holland; 1978. p. 657–95.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Azerbaijan State Oil and Industry UniversityBakuAzerbaijan
  2. 2.Baku State UniversityBakuAzerbaijan
  3. 3.Institute of Catalysis and Inorganic ChemistryAzerbaijan National Academy of SciencesBakuAzerbaijan

Personalised recommendations