Journal of Thermal Analysis and Calorimetry

, Volume 131, Issue 3, pp 2027–2039 | Cite as

Applications of nanofluids in condensing and evaporating systems

A review
  • Saman Rashidi
  • Omid Mahian
  • Ehsan Mohseni Languri


Nanofluids can be utilized as efficient heat transfer fluids in many thermal energy systems to improve the system’s thermal efficiency. This survey reviews and summarizes the experimental and numerical studies performed to determine the effect of nanofluids on the performance of condensing and evaporating systems. Advantages and disadvantages of nanofluid implementation in condensing and evaporating systems are evaluated and summarized. Moreover, some suggestions and recommendations are presented for future studies. This review shows that the nanoparticle deposition and nanoparticle suspension are two important factors affecting the thermal system’s efficiency. These factors should be considered when using different nanofluids in condensing and evaporating systems.


Nanofluids Condensing Evaporating Numerical Experimental 


  1. 1.
    Laohalertdecha S, Kaew-On J, Wongwises S. The effect of the electrohydrodynamic on the two-phase flow pressure drop of R-134a during evaporation inside horizontal smooth and micro-fin tubes. Heat Transf Eng. 2010;31:108–18.CrossRefGoogle Scholar
  2. 2.
    Sohag FA, Becka FR, Mohanta L, Cheung FB, Segall AE, Eden TJ, Potter JK. Enhancement of downward-facing saturated boiling heat transfer by the cold spray technique. Nucl Eng Technol. 2017;49:113–22.CrossRefGoogle Scholar
  3. 3.
    Boziuk TR, Smith MK, Glezer A. Enhanced boiling heat transfer on plain and featured surfaces using acoustic actuation. Int J Heat Mass Transf. 2017;108:181–90.CrossRefGoogle Scholar
  4. 4.
    He Y, Li H, Hu Y, Wang X, Zhu J. Boiling heat transfer characteristics of ethylene glycol and water mixture based ZnO nanofluids in a cylindrical vessel. Int J Heat Mass Transf. 2016;98:611–5.CrossRefGoogle Scholar
  5. 5.
    Kim DE, Yu DI, Jerng DW, Kim MH, Ahn HS. Review of boiling heat transfer enhancement on micro/nanostructured surfaces. Exp Therm Fluid Sci. 2015;66:173–96.CrossRefGoogle Scholar
  6. 6.
    Mori S, Utaka Y. Critical heat flux enhancement by surface modification in a saturated pool boiling: a review. Int J Heat Mass Transf. 2017;108:2534–57.CrossRefGoogle Scholar
  7. 7.
    Famileh IZ, Esfahani JA. Experimental investigation of wet flue gas condensation using twisted tape insert. Int J Heat Mass Transf. 2017;108:1466–80.CrossRefGoogle Scholar
  8. 8.
    Fang X, Chen Y, Zhang H, Chen W, Dong A, Wang R. Heat transfer and critical heat flux of nanofluid boiling: a comprehensive review. Renew Sustain Energy Rev. 2016;62:924–40.CrossRefGoogle Scholar
  9. 9.
    Ciloglu D, Bolukbasi A. A comprehensive review on pool boiling of nanofluids. Appl Therm Eng. 2015;84:45–63.CrossRefGoogle Scholar
  10. 10.
    Kamatchi R, Venkatachalapathy S. Parametric study of pool boiling heat transfer with nanofluids for the enhancement of critical heat flux: a review. Int J Therm Sci. 2015;87:228–40.CrossRefGoogle Scholar
  11. 11.
    Celen A, Çebi A, Aktas M, Mahian O, Dalkilic AS, Wongwises S. A review of nanorefrigerants: flow characteristics and applications. Int J Refrig. 2014;44:125–40.CrossRefGoogle Scholar
  12. 12.
    Cai J, Hu X, Xiao B, Zhou Y, Wei W. Recent developments on fractal-based approaches to nanofluids and nanoparticle aggregation. Int J Heat Mass Transf. 2017;105:623–37.CrossRefGoogle Scholar
  13. 13.
    Bashirnezhad K, Rashidi MM, Yang Z, Bazri S, Yan WM. A comprehensive review of last experimental studies on thermal conductivity of nanofluids. J Therm Anal Calorim. 2015;122:863–84.CrossRefGoogle Scholar
  14. 14.
    Fieg GP, Roetzel W. Calculation of laminar film condensation in/on inclined elliptical tubes. Int J Heat Mass Transf. 1994;37:619–24.CrossRefGoogle Scholar
  15. 15.
    Capellas M, Caminal G, Gonzalez G, Lopez-Santin J, Clapes P. Enzymatic condensation of cholecystokinin CCK-8 (4–6) and CCK-8 (7–8) peptide fragments in organic media. Biotechnol Bioeng. 1997;56:456–63.CrossRefGoogle Scholar
  16. 16.
    Sun DW, Zheng L. Vacuum cooling technology for the agri-food industry: past, present and future. J Food Eng. 2006;77:203–14.CrossRefGoogle Scholar
  17. 17.
    Dutta A, Som SK, Das PK. Film condensation of saturated vapour over horizontal non-circular tubes with progressively increasing radius of curvature drawn in the direction of gravity. ASME J Heat Transf. 2004;126:906–14.CrossRefGoogle Scholar
  18. 18.
    Dalkilic AS, Wongwises S. Intensive literature review of condensation inside smooth and enhanced tubes. Int J Heat Mass Transf. 2009;52:3409–26.CrossRefGoogle Scholar
  19. 19.
    Liu ZH, Li YY, Bao R. Thermal performance of inclined grooved heat pipes using nanofluids. Int J Therm Sci. 2010;49:1680–7.CrossRefGoogle Scholar
  20. 20.
    Huminic G, Huminic A. Heat transfer characteristics of a two-phase closed thermosyphons using nanofluids. Exp Therm Fluid Sci. 2011;35:550–7.CrossRefGoogle Scholar
  21. 21.
    Reis Parise JA. A simulation model for the application of nanofluids as condenser coolants in vapor compression heat pumps. In: International refrigeration and air conditioning conference, 2012, Purdue University.Google Scholar
  22. 22.
    Huminic G, Huminic A. Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids. Energy Convers Manag. 2013;76:393–9.CrossRefGoogle Scholar
  23. 23.
    Avramenko AA, Shevchuk IV, Tyrinov AI, Blinov DG. Heat transfer at film condensation of stationary vapor with nanoparticles near a vertical plate. Appl Therm Eng. 2014;73:389–96.CrossRefGoogle Scholar
  24. 24.
    Avramenko AA, Shevchuk IV, Tyrinov AI, Blinov DG. Heat transfer at film condensation of moving vapor with nanoparticles over a flat surface. Int J Heat Mass Transf. 2015;82:316–24.CrossRefGoogle Scholar
  25. 25.
    El Mghari H, Louahlia-Gualous H, Lepinasse E. Numerical study of nanofluid condensation heat transfer in a square microchannel. Numer Heat Transf Part A Appl. 2015;68:1242–65.CrossRefGoogle Scholar
  26. 26.
    Turkyilmazoglu M. Analytical solutions of single and multi-phase models for the condensation of nanofluid film flow and heat transfer. Eur J Mech B Fluids. 2015;53:272–7.CrossRefGoogle Scholar
  27. 27.
    Turkyilmazoglu M. Condensation of laminar film over curved vertical walls using single and two-phase nanofluid models. Eur J Mech B Fluids. 2017;65:184–91.CrossRefGoogle Scholar
  28. 28.
    Malvandi A, Ghasemi A, Ganji DD, Pop I. Effects of nanoparticles migration on heat transfer enhancement at film condensation of nanofluids over a vertical cylinder. Adv Powder Technol. 2016;27:1941–8.CrossRefGoogle Scholar
  29. 29.
    Malvandi A, Ganji DD, Kaffash MH. Magnetic field effects on nanoparticle migration and heat transfer of alumina/water nanofluid in a parallel-plate channel with asymmetric heating. Eur Phys J Plus. 2015;130:63.CrossRefGoogle Scholar
  30. 30.
    Moshizi SA, Malvandi A. Different modes of nanoparticle migration at mixed convection of Al2O3–water nanofluid inside a vertical microannulus in the presence of heat generation/absorption. J Therm Anal Calorim. 2016;126:1947–62.CrossRefGoogle Scholar
  31. 31.
    Malvandi A, Ganji DD, Pop I. Laminar filmwise condensation of nanofluids over a vertical plate considering nanoparticles migration. Appl Therm Eng. 2016;100:979–86.CrossRefGoogle Scholar
  32. 32.
    Malvandi A, Heysiattalab S, Ganji DD. Effects of magnetic field strength and direction on anisotropic thermal conductivity of ferrofluids (magnetic nanofluids) at filmwise condensation over a vertical cylinder. Adv Powder Technol. 2016;27:1539–46.CrossRefGoogle Scholar
  33. 33.
    Heysiattalab S, Malvandi A, Ganji DD. Anisotropic behavior of magnetic nanofluids (MNFs) at filmwise condensation over a vertical plate in presence of a uniform variable-directional magnetic field. J Mol Liq. 2016;219:875–82.CrossRefGoogle Scholar
  34. 34.
    Lee YA, Kuo LS, Su TW, Hsu CC, Chen PH. Orientation effects of nanoparticle-modified surfaces with interlaced wettability on condensation heat transfer. Appl Therm Eng. 2016;98:1054–60.CrossRefGoogle Scholar
  35. 35.
    Famileh IZ, Esfahani JA, Vafai K. Effect of nanoparticles on condensation of humid air in vertical channels. Int J Therm Sci. 2017;112:470–83.CrossRefGoogle Scholar
  36. 36.
    Chon CH, Paik S, Tipton JB, Kihm KD. Effect of nanoparticle sizes and number densities on the evaporation and dryout characteristics for strongly pinned nanofluid droplets. Langmuir. 2007;23:2953–60.CrossRefGoogle Scholar
  37. 37.
    Sefiane K, Bennacer R. Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates. Adv Colloid Interface Sci. 2009;147–148:263–71.CrossRefGoogle Scholar
  38. 38.
    Chen RH, Phuoc TX, Martello D. Effects of nanoparticles on nanofluid droplet evaporation. Int J Heat Mass Transf. 2010;53:3677–82.CrossRefGoogle Scholar
  39. 39.
    Chen RH, Phuoc TX, Martello D. Surface tension of evaporating nanofluid droplets. Int J Heat Mass Transf. 2011;54:2459–66.CrossRefGoogle Scholar
  40. 40.
    Zhao IJ, Wang XD, Duan YY, Wang BX. Effect of nanofluids on thin film evaporation in microchannels. J Nanopart Res. 2011;13:5033–47.CrossRefGoogle Scholar
  41. 41.
    Gan Y, Qiao L. Evaporation characteristics of fuel droplets with the addition of nanoparticles under natural and forced convections. Int J Heat Mass Transf. 2011;54:4913–22.CrossRefGoogle Scholar
  42. 42.
    Javed I, Baek SW, Waheed K. An experimental investigation on effects of an electric field on bubble growth on a small heater in pool boiling. Combust Flame. 2013;160:170–83.CrossRefGoogle Scholar
  43. 43.
    Gerken WJ, Thomas AV, Koratkar N, Oehlschlaeger MA. Nanofluid pendant droplet evaporation: experiments and modeling. Int J Heat Mass Transf. 2014;74:263–8.CrossRefGoogle Scholar
  44. 44.
    Shin DH, Choi CK, Kang YT, Lee SH. Local aggregation characteristics of a nanofluid droplet during evaporation. Int J Heat Mass Transf. 2014;72:336–44.CrossRefGoogle Scholar
  45. 45.
    Tso CY, Chao YH. Study of enthalpy of evaporation, saturated vapor pressure and evaporation rate of aqueous nanofluids. Int J Heat Mass Transf. 2015;84:931–41.CrossRefGoogle Scholar
  46. 46.
    Chen W, Lin J. Thermal analysis of nanofluids on the thin film evaporation of meniscus. Heat Transf Asian Res. 2016;45:578–93.CrossRefGoogle Scholar
  47. 47.
    Rudolf Eggers J, Matthias Lange E, Kabelac S. Particle migration in isobaric and flash evaporation of nanofluids. Forsch Ingenieurwes. 2016;80:101–9.CrossRefGoogle Scholar
  48. 48.
    Wei Y, Deng W, Chen RH. Effects of insoluble nano-particles on nanofluid droplet evaporation. Int J Heat Mass Transf. 2016;97:725–34.CrossRefGoogle Scholar
  49. 49.
    Wei Y, Deng W, Chen RH. Effects of internal circulation and particle mobility during nanofluid droplet evaporation. Int J Heat Mass Transf. 2016;103:1335–47.CrossRefGoogle Scholar
  50. 50.
    Fu S, Tso C, Fong Y, Chao CYH. Evaporation of Al2O3-water nanofluids in an externally micro-grooved evaporator. Sci Technol Built Environ. 2016;23:345–54.CrossRefGoogle Scholar
  51. 51.
    Mahian O, Kianifar A, Zeinali Heris S, Wen D, Sahin AZ, Wongwises S. Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy. 2017;36:134–55.CrossRefGoogle Scholar
  52. 52.
    Wang GS, Song B, Liu ZH. Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids. Exp Therm Fluid Sci. 2010;34:1415–21.CrossRefGoogle Scholar
  53. 53.
    Chiang Y, Kuo W, Ho C, Chieh J. Experimental study on thermal performances of heat pipes for air-conditioning systems influenced by magnetic nanofluids, external fields, and micro wicks. Int J Refrig. 2014;43:62–70.CrossRefGoogle Scholar
  54. 54.
    Liu Z, Li Y, Bao R. Compositive effect of nanoparticle parameter on thermal performance of cylindrical microgrooved heat pipe using nanofluids. Int J Therm Sci. 2011;50:558–68.CrossRefGoogle Scholar
  55. 55.
    Do KH, Jang SP. ‘‘Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick. Int J Heat Mass Transf. 2010;53:2183–92.CrossRefGoogle Scholar
  56. 56.
    Mehrali M, Sadeghinezhad E, Azizian R, Reza A, Tahan S, Mehrali M, Simon H, Metselaar C. Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe. Energy Convers Manag. 2016;118:459–73.CrossRefGoogle Scholar
  57. 57.
    Kole M, Dey TK. Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids. Appl Therm Eng. 2013;50:763–70.CrossRefGoogle Scholar
  58. 58.
    Do KH, Ha HJ, Jang SP. Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluids. Int J Heat Mass Transf. 2010;53:5888–94.CrossRefGoogle Scholar
  59. 59.
    Putra N, Septiadi WN, Rahman H, Irwansyah R. Thermal performance of screen mesh wick heat pipes with nanofluids. Exp Therm Fluid Sci. 2012;40:10–7.CrossRefGoogle Scholar
  60. 60.
    Peng H, Ding G, Hu H. Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid. Exp Therm Fluid Sci. 2011;35:960–70.CrossRefGoogle Scholar
  61. 61.
    Peng H, Ding G, Hu H. Influences of refrigerant-based nanofluid composition and heating condition on the migration of nanoparticles during pool boiling. Part I: experimental measurement. Int J Refrig. 2011;34:1823–32.CrossRefGoogle Scholar
  62. 62.
    Peng H, Ding G, Hu H. Influences of refrigerant-based nanofluid composition and heating condition on the migration of nanoparticles during pool boiling. Part II: model development and validation. Int J Refrig. 2011;34:1833–45.CrossRefGoogle Scholar
  63. 63.
    Peng H, Ding G, Hu H, Jiang W. Effect of nanoparticle size on nucleate pool boiling heat transfer of refrigerant-oil mixture with nanoparticles. Int J Heat Mass Transf. 2011;54:1839–50.CrossRefGoogle Scholar
  64. 64.
    Prakash NG, Anoop KB, Das SK. Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticles suspensions over vertical tubes. J Appl Phys. 2007;102:1–7.CrossRefGoogle Scholar
  65. 65.
    Prakash NG, Anoop KB, Sateesh G, Das SK. Effect of surface orientation on pool boiling heat transfer of nanoparticle suspensions. Int J Multiph Flow. 2008;34:145–60.CrossRefGoogle Scholar
  66. 66.
    Zheng R, Gao J, Wang J, Chen G. Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions. Nat Commun. 2011;2:289.CrossRefGoogle Scholar
  67. 67.
    Hsieh SS, Liu HH, Yeh YF. Nanofluids spray heat transfer enhancement. Int J Heat Mass Transf. 2016;94:104–18.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Saman Rashidi
    • 1
  • Omid Mahian
    • 2
  • Ehsan Mohseni Languri
    • 3
  1. 1.Department of Mechanical Engineering, Semnan BranchIslamic Azad UniversitySemnanIran
  2. 2.Center for Advanced TechnologiesFerdowsi University of MashhadMashhadIran
  3. 3.Department of Mechanical EngineeringTennessee Tech UniversityCookevilleUSA

Personalised recommendations