Skip to main content
Log in

Calorimetric characterisation of the toxofilin–G-actin complex

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present work, the thermodynamic characterisation of toxofilin–G-actin complex was completed with differential scanning calorimetry. The relative change in the under curve area of the un-complexed G-actin in the presence of varying toxofilin concentrations was used as an indirect indicator of the complex formation. The toxofilin could efficiently bind to G-actin with a K D value of 15.7 µM. Besides its binding activity, toxofilin stabilised the attached actin molecules as the T m value of G-actin increased to 64.19 °C after the complex formation. Based on the findings, it is possible to conclude that even non-mammalian actin-binding proteins can efficiently modify the basic structural and dynamic properties of actin monomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112(4):453–65.

    Article  CAS  Google Scholar 

  2. Pollard TD, Cooper JA. Actin, a central player in cell shape and movement. Science. 2009;326(5957):1208–12.

    Article  CAS  Google Scholar 

  3. Hild G, Bugyi B, Nyitrai M. Conformational dynamics of actin: effectors and implications for biological function. Cytoskeleton (Hoboken). 2010;67(10):609–29.

    Article  CAS  Google Scholar 

  4. Paavilainen VO, Bertling E, Falck S, Lappalainen P. Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends Cell Biol. 2004;14(7):386–94.

    Article  CAS  Google Scholar 

  5. Hild G, Nyitrai M, Belagyi J, Somogyi B. The influence of divalent cations on the dynamic properties of actin filaments: a spectroscopic study. Biophys J. 1998;75(6):3015–22.

    Article  CAS  Google Scholar 

  6. Hild G, Nyitrai M, Gharavi R, Somogyi B, Belagyi J. Fluorescence quenching of the tryptophan emission from the F- and G-forms of actin. J Photochem Photobiol, B. 1996;35(3):175–9.

    Article  CAS  Google Scholar 

  7. Hild G, Nyitrai M, Somogyi B. Intermonomer flexibility of Ca- and Mg-actin filaments at different pH values. Eur J Biochem. 2002;269(3):842–9.

    Article  CAS  Google Scholar 

  8. Nyitrai M, Hild G, Belagyi J, Somogyi B. The flexibility of actin filaments as revealed by fluorescence resonance energy transfer. The influence of divalent cations. J Biol Chem. 1999;274(19):12996–3001.

    Article  CAS  Google Scholar 

  9. Nyitrai M, Hild G, Hartvig N, Belagyi J, Somogyi B. Conformational and dynamic differences between actin filaments polymerized from ATP- or ADP-actin monomers. J Biol Chem. 2000;275(52):41143–9.

    Article  CAS  Google Scholar 

  10. Nyitrai M, Hild G, Lakos Z, Somogyi B. Effect of Ca2+–Mg2+ exchange on the flexibility and/or conformation of the small domain in monomeric actin. Biophys J. 1998;74(5):2474–81.

    Article  CAS  Google Scholar 

  11. Orban J, Lőrinczy D, Hild G, Nyitrai M. Noncooperative stabilization effect of phalloidin on ADP.BeFx- and ADP.AlF4-actin filaments. Biochemistry. 2008;47(15):4530–4.

    Article  CAS  Google Scholar 

  12. Orban J, Lőrinczy D, Nyitrai M, Hild G. Nucleotide dependent differences between the alpha-skeletal and alpha-cardiac actin isoforms. Biochem Biophys Res Commun. 2008;368(3):696–702.

    Article  CAS  Google Scholar 

  13. Vig A, Dudas R, Kupi T, Orban J, Hild G, Lőrinczy D, et al. Effect of phalloidin on filaments polymerized from heart muscle adp-actin monomers. J Therm Anal Calorim. 2009;95(3):721–5.

    Article  CAS  Google Scholar 

  14. Vig A, Ohmacht R, Jambor E, Bugyi B, Nyitrai M, Hild G. The effect of toxins on inorganic phosphate release during actin polymerization. Eur Biophys J. 2011;40(5):619–26.

    Article  CAS  Google Scholar 

  15. Visegrady B, Lőrinczy D, Hild G, Somogyi B, Nyitrai M. The effect of phalloidin and jasplakinolide on the flexibility and thermal stability of actin filaments. FEBS Lett. 2004;565(1–3):163–6.

    Article  CAS  Google Scholar 

  16. Visegrady B, Lőrinczy D, Hild G, Somogyi B, Nyitrai M. A simple model for the cooperative stabilisation of actin filaments by phalloidin and jasplakinolide. FEBS Lett. 2005;579(1):6–10.

    Article  CAS  Google Scholar 

  17. Ono S. Basic methods to visualize actin filaments in vitro using fluorescence microscopy for observation of filament severing and bundling. Methods Mol Biol. 2016;1365:187–93.

    Article  CAS  Google Scholar 

  18. Winterhoff M, Bruhmann S, Franke C, Breitsprecher D, Faix J. Visualization of actin assembly and filament turnover by in vitro multicolor TIRF microscopy. Methods Mol Biol. 2016;1407:287–306.

    Article  CAS  Google Scholar 

  19. Pivovarova AV, Chebotareva NA, Kremneva EV, Lappalainen P, Levitsky DI. Effects of actin-binding proteins on the thermal stability of monomeric actin. Biochemistry. 2013;52(1):152–60.

    Article  CAS  Google Scholar 

  20. Kardos R, Nevalainen E, Nyitrai M, Hild G. The effect of ADF/cofilin and profilin on the dynamics of monomeric actin. Biochim Biophys Acta. 2013;1834(10):2010–9.

    Article  CAS  Google Scholar 

  21. Kardos R, Pozsonyi K, Nevalainen E, Lappalainen P, Nyitrai M, Hild G. The effects of ADF/cofilin and profilin on the conformation of the ATP-binding cleft of monomeric actin. Biophys J. 2009;96(6):2335–43.

    Article  CAS  Google Scholar 

  22. Hegyi G, Szilagyi L, Belagyi J. Influence of the bound nucleotide on the molecular dynamics of actin. Eur J Biochem. 1988;175(2):271–4.

    Article  CAS  Google Scholar 

  23. Ozawa H, Watabe S, Ochiai Y. Thermodynamic characterization of muscle tropomyosins from marine invertebrates. Comp Biochem Physiol B: Biochem Mol Biol. 2011;160(2–3):64–71.

    Article  CAS  Google Scholar 

  24. Delorme V, Cayla X, Faure G, Garcia A, Tardieux I. Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin. Mol Biol Cell. 2003;14(5):1900–12.

    Article  CAS  Google Scholar 

  25. Lee SH, Hayes DB, Rebowski G, Tardieux I, Dominguez R. Toxofilin from Toxoplasma gondii forms a ternary complex with an antiparallel actin dimer. Proc Natl Acad Sci USA. 2007;104(41):16122–7.

    Article  CAS  Google Scholar 

  26. Poupel O, Boleti H, Axisa S, Couture-Tosi E, Tardieux I. Toxofilin, a novel actin-binding protein from Toxoplasma gondii, sequesters actin monomers and caps actin filaments. Mol Biol Cell. 2000;11(1):355–68.

    Article  CAS  Google Scholar 

  27. Czimbalek L, Kollar V, Kardos R, Lőrinczy D, Nyitrai M, Hild G. The effect of toxofilin on the structure and dynamics of monomeric actin. FEBS Lett. 2015;589(20 Pt B):3085–9.

    Article  CAS  Google Scholar 

  28. Feuer G, Molnar F, et al. Studies on the composition and polymerization of actin. Hung Acta Physiol. 1948;1(4–5):150–63.

    CAS  Google Scholar 

  29. Mossakowska M, Belagyi J, Strzelecka-Golaszewska H. An EPR study of the rotational dynamics of actins from striated and smooth muscle and their complexes with heavy meromyosin. Eur J Biochem. 1988;175(3):557–64.

    Article  CAS  Google Scholar 

  30. Spudich JA, Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971;246(15):4866–71.

    CAS  Google Scholar 

  31. Elzinga M, Collins JH, Kuehl WM, Adelstein RS. Complete amino-acid sequence of actin of rabbit skeletal muscle. Proc Natl Acad Sci USA. 1973;70(9):2687–91.

    Article  CAS  Google Scholar 

  32. Houk TW Jr, Ue K. The measurement of actin concentration in solution: a comparison of methods. Anal Biochem. 1974;62(1):66–74.

    Article  CAS  Google Scholar 

  33. Feldman HA. Mathematical theory of complex ligand-binding systems of equilibrium: some methods for parameter fitting. Anal Biochem. 1972;48(2):317–38.

    Article  CAS  Google Scholar 

  34. Takacs-Kollar V, Nyitrai M, Hild G. The effect of mouse twinfilin-1 on the structure and dynamics of monomeric actin. Biochim Biophys Acta. 2016;1864(7):840–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Hungarian Science Foundation (NKFIH) K112794 (to MNy), grants from the Hungarian National Office for Research and Technology [GVOP-3.2.1.-2004-04-0190/3.0 and GVOP-3.2.1.-2004-04-0228/3.0 (to MNy)] and by the Grant of PTE ÁOK-KA-2013/1 (to GH). This work was also supported by ‘Science, Please! Research Team on Innovation’ (SROP-4.2.2/08/1/2008-0011) programme and by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 ‘National Excellence Program’. The Setaram Micro DSC-II (Caluire, France) calorimeter was supported by grant from the Hungarian Scientific Research Found (NKFIH) CO-272 (DL). The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dénes Lőrinczy or Gábor Hild.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takács-Kollár, V., Nyitrai, M., Lőrinczy, D. et al. Calorimetric characterisation of the toxofilin–G-actin complex. J Therm Anal Calorim 131, 1307–1311 (2018). https://doi.org/10.1007/s10973-017-6698-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6698-1

Keywords

Navigation