Skip to main content
Log in

Thermal analysis of the improved Hummers’ synthesis of graphene oxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The improved Hummers’ synthesis of graphene oxide (GO) from graphite is investigated to monitor how the functional groups form during the synthesis steps. To achieve these, samples are taken after every preparation step and analyzed with TG–DTA/MS, FTIR, XRD and SEM–EDX techniques. It was found that the main characteristic mass loss step of GO was around 200 °C, where at first the carboxyl and lactone groups were released, and the evolution of sulfonyl groups followed them right away in a partially overlapping step. It became clear that in the as-prepared acidic GO sample the presence of H2SO4 originating from the reaction solution was still dominant. The functional groups were formed only after washing the as-prepared GO with HCl. The consecutive washing step with distilled water did not alter the functional groups or the thermal properties significantly; however, it made the GO structure more ordered. The reduction of the GO structure back to reduced GO resulted in the loss of the functional groups, and a graphitic material was obtained back.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved Synthesis of graphene oxide. ACS Nano. 2010;4:4806–14.

    Article  CAS  Google Scholar 

  2. Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts. Chem Soc Rev. 2012;41:782–96.

    Article  CAS  Google Scholar 

  3. Cooper DR, D’Anjou B, Ghattamaneni N, Harack B, Hilke M, Horth A, et al. Experimental review of graphene. ISRN Condens Matter Phys. 2012;2012:1–56.

    Article  Google Scholar 

  4. Berke B, Czakkel O, Porcar L, Geissler E, Laszlo K. Static and dynamic behaviour of responsive graphene oxide—poly (N-isopropyl acrylamide) composite gels. Soft Matter. 2016;12:7166–73.

    Article  CAS  Google Scholar 

  5. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448:457–60.

    Article  CAS  Google Scholar 

  6. Liu X, Wu W, Qi Y, Qu H, Xu J. Synthesis of a hybrid zinc hydroxystannate/reduction graphene oxide as a flame retardant and smoke suppressant of epoxy resin. J Therm Anal Calorim. 2016;126:553–9.

    Article  CAS  Google Scholar 

  7. Zhang X, Weeks BL. Improved thermal stability and reduced sublimation rate of pentaerythritol tetranitrate through doping graphene oxide. J Therm Anal Calorim. 2015;122:1061–7.

    Article  CAS  Google Scholar 

  8. Botas C, Álvarez P, Blanco P, Granda M, Blanco C, Santamaría R, et al. Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon. 2013;65:156–64.

    Article  CAS  Google Scholar 

  9. Brodie BC, Trans P, Lond RS. On the atomic weight of graphite. Philos Trans R Soc Lond. 1859;149:249–59.

    Article  Google Scholar 

  10. Chen J, Li Y, Huang L, Li C, Shi G. High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon. 2015;81:826–34.

    Article  CAS  Google Scholar 

  11. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80:1339.

    Article  CAS  Google Scholar 

  12. Casabianca LB, Shaibat MA, Cai WW, Park S, Piner R, Ruoff RS, et al. NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations. J Am Chem Soc. 2010;132:5672–6.

    Article  CAS  Google Scholar 

  13. Guerrero-Contreras J, Caballero-Briones F. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater Chem Phys. 2015;153:209–20.

    Article  CAS  Google Scholar 

  14. Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM. Modification of the surface chemistry of activated carbons. Carbon. 1999;37:1379–89.

    Article  CAS  Google Scholar 

  15. Allahbakhsh A, Haghighi AH, Sheydaei M. Poly(ethylene trisulfide)/graphene oxide nanocomposites. J Therm Anal Calorim. 2017;128:427–42.

    Article  CAS  Google Scholar 

  16. Eigler S, Dotzer C, Hof F, Bauer W, Hirsch A. Sulfur species in graphene oxide. Chemistry. 2013;19:9490–6.

    Article  CAS  Google Scholar 

  17. Dimiev A, Kosynkin DV, Alemany LB, Chaguine P, Tour JM. Pristine graphite oxide. J Am Chem Soc. 2012;134:2815–22.

    Article  CAS  Google Scholar 

  18. Gao W, Alemany LB, Ci L, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nat Chem. 2009;1:403–8.

    Article  CAS  Google Scholar 

  19. Eigler S, Dotzer C, Hirsch A. Visualization of defect densities in reduced graphene oxide. Carbon. 2012;50:3666–73.

    Article  CAS  Google Scholar 

  20. Wu T, Wang X, Qiu H, Gao J, Wang W, Liu Y. Graphene oxide reduced and modified by soft nanoparticles and its catalysis of the Knoevenagel condensation. J Mater Chem. 2012;22:4772.

    Article  CAS  Google Scholar 

  21. Wang P, Tang Y, Dong Z, Chen Z, Lim T-T. Ag–AgBr/TiO2/RGO nanocomposite for visible-light photocatalytic degradation of penicillin G. J Mater Chem A. 2013;1:4718.

    Article  CAS  Google Scholar 

  22. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–65.

    Article  CAS  Google Scholar 

  23. Rodriguez-Pastor I, Ramos-Fernandez G, Varela-Rizo H, Terrones M, Martin-Gullon I. Towards the understanding of the graphene oxide structure: how to control the formation of humic- and fulvic-like oxidized debris. Carbon. 2015;84:299–309.

    Article  CAS  Google Scholar 

  24. Lin Y, Jin J, Song M. Preparation and characterisation of covalent polymer functionalized graphene oxide. J Mater Chem. 2011;21:3455.

    Article  CAS  Google Scholar 

  25. Zhu P, Shen M, Xiao S, Zhang D. Experimental study on the reducibility of graphene oxide by hydrazine hydrate. Phys B Condens Matter. 2011;406:498–502.

    Article  CAS  Google Scholar 

  26. Hu J, Li H, Wu Q, Zhao Y, Jiao Q. Synthesis of TiO2 nanowire/reduced graphene oxide nanocomposites and their photocatalytic performances. Chem Eng J. 2015;263:144–50.

    Article  CAS  Google Scholar 

  27. Khanra P, Lee C-N, Kuila T, Kim NH, Park MJ, Lee JH. 7,7,8,8-Tetracyanoquinodimethane-assisted one-step electrochemical exfoliation of graphite and its performance as an electrode material. Nanoscale. 2014;6:4864.

    Article  CAS  Google Scholar 

  28. Kótai L, Keszler Á, Pató J, Holly S. The reactions of barium manganate with acids and their precursors. Ind J Chem. 1999;33:966–8.

    Google Scholar 

  29. Kótai L, Sajó IE, Gács I, Sharma PK, Banerji KK. Convenient routes for the prepapration of barium permanganate and other permanganate salts. Z Anorg Allg Chem. 2007;633:1257–60.

    Article  Google Scholar 

  30. Kótai L, Gács I, Sajó IE, Sharma PK, Banerji KK. Beliefs and facts in permanganate chemistry—an overview on the synthesis and the reactivity of simple and complex permanganates. Trends Inorg Chem. 2009;11:25–104.

    Google Scholar 

  31. Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, et al. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectros Relat Phenom. 2014;195:145–54.

    Article  CAS  Google Scholar 

  32. Krishnamoorthy K, Mohan R, Kim SJ. Graphene oxide as a photocatalytic material. Appl Phys Lett. 2011;98:2013–6.

    Article  Google Scholar 

  33. Zhang Z-B, Wu J-J, Su Y, Zhou J, Gao Y, Yu H-Y, et al. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance. Appl Surf Sci. 2015;332:300–7.

    Article  CAS  Google Scholar 

  34. Qiu J, Lai C, Wang Y, Li S, Zhang S. Resilient mesoporous TiO2/graphene nanocomposite for high rate performance lithium–ion batteries. Chem Eng J. 2014;256:247–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I. M. Szilágyi thanks for a János Bolyai Research Fellowship of the Hungarian Academy of Sciences, an ÚNKP-17-4-IV-BME-188 and an OTKA PD-109129 Grant. Financial support from the National Scientific Research Fund (OTKA) through NN110209 and K109558 is acknowledged. Financial support from VEKOP-2.3.2-16-2017-00013 and K124212 grants are thanked. K. László extends her thanks to K. Katsumi for the graphite material. The help of Virág Bérczes (Budapest University of Technology and Economics, Department of Physical Chemistry and Materials Science) in the synthesis steps is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Miklós Szilágyi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1980 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Justh, N., Berke, B., László, K. et al. Thermal analysis of the improved Hummers’ synthesis of graphene oxide. J Therm Anal Calorim 131, 2267–2272 (2018). https://doi.org/10.1007/s10973-017-6697-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6697-2

Keywords

Navigation