Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 131, Issue 2, pp 1269–1276 | Cite as

Thermal decomposition of lutetium nitrate trihydrate Lu(NO3)3·3H2O

  • P. MelnikovEmail author
  • I. V. Arkhangelsky
  • V. A. Nascimento
  • L. C. S. de Oliveira
  • W. R. Guimaraes
  • L. Z. Zanoni
Article
  • 152 Downloads

Abstract

The thermal decomposition of lutetium nitrate starts with essentially a process of dehydration of the initial monomer Lu(NO3)3·3H2O with further condensation into a hexamer Lu6N18O54·6H2O. The latter decomposes in four steps with release of water, azeotrope 68% HNO3–32% H2O, nitric acid, nitrogen dioxide and oxygen. The resulting intermediate compounds are lutetium oxynitrates Lu6N4O19 and Lu6N2O14. After complete denitrification at high temperatures, they are converted into unstable trimer Lu6O18 which is destroyed leaving behind lutetium oxide. All mass losses are accounted for, step by step. The intermediates were characterized using thermal analysis, infrared spectroscopy and X-ray diffractometry. The models of intermediate oxynitrates obtained with the molecular mechanics technique represent a reasonably good approximation to the real structures.

Keywords

Rare earths Lutetium nitrate trihydrate Triaquatrinitratolutetium(III) Thermal decomposition Oxynitrates 

Notes

Acknowledgements

The authors indebted to CNPq (Brazilian agency) for financial support.

References

  1. 1.
    Melnikov P, Nascimento VA, Zanoni Consolo LZ. Thermal decomposition of gallium nitrate hydrate and modeling of thermolysis products. J Therm Anal Calorim. 2012;107:1117–21.CrossRefGoogle Scholar
  2. 2.
    Melnikov P, Nascimento VA, Zanoni Consolo LZ. Computerized modeling of intermediate compounds formed during thermal decomposition of gadolinium nitrate hydrate. Russ J Phys Chem. 2012;86:1659–63.CrossRefGoogle Scholar
  3. 3.
    Melnikov P, Nascimento VA, Consolo LZZ, Silva AF. Mechanism of thermal decomposition of yttrium nitrate hexahydrate Y(NO3)6H2O and modeling of intermediate oxynitrates. J Therm Anal Calorim. 2013;111:115–9.CrossRefGoogle Scholar
  4. 4.
    Melnikov P, Nascimento VA, Arkhangelsky IV, Zanoni Consolo LZ. Thermal decomposition mechanism of aluminum nitrate octahydrate and characterization of intermediate products by the technique of computerized modeling. J Therm Anal Calorim. 2013;111:543–8.CrossRefGoogle Scholar
  5. 5.
    Melnikov P, Nascimento VA, Arkhangelsky IV, Zanoni Consolo LZ, de Oliveira LCS. Thermolysis mechanism of chromium nitrate nonahydrate and computerized modeling of intermediate products. J Therm Anal Calorim. 2013;114:1021–7.CrossRefGoogle Scholar
  6. 6.
    Melnikov P, Nascimento VA, Arkhangelsky IV, Zanoni Consolo LZ, de Oliveira LCS. Thermal decomposition mechanism of iron (III) nitrate and characterization of intermediate products by the technique of computerized modeling. J Therm Anal Calorim. 2014;115:145–51.CrossRefGoogle Scholar
  7. 7.
    Melnikov P, Arkhangelsky IV, Nascimento VA, Silva AF, Zanoni Consolo LZ, de Oliveira LCS, Herrero AS. Thermolysis mechanism of dysprosium hexahydrate nitrate Dy(NO3)3·6H2O and modeling of intermediate decomposition products. J Therm Anal Calorim. 2015;122:571–8.CrossRefGoogle Scholar
  8. 8.
    Melnikov P, Arkhangelsky IV, Nascimento VA, Silva AF, Zanoni Consolo LZ. Thermolysis mechanism of samarium nitrate hexahydrate. J Therm Anal Calorim. 2014;118:1537–41.CrossRefGoogle Scholar
  9. 9.
    Melnikov P, Nascimento VA, Arkhangelsky IV, Silva AF, Zanoni Consolo LZ. Thermogravimetric study of the scandium nitrate hexahydrate thermolysis and computer modeling of intermediate oxynitrates. J Therm Anal Calorim. 2015;119:1073–9.CrossRefGoogle Scholar
  10. 10.
    Wieczorek-Ciurowa K, Kozak AJ. The thermal decomposition of Fe(NO3)3·9H2O. J Therm Anal Calorim. 1999;58:647–51.CrossRefGoogle Scholar
  11. 11.
    Junk PC, Kepert DL, Skelton BW, White AH. Structural systematics of rare earth complexes. XIII (‘maximally’) hydrated (heavy) rare earth nitrates. Aust J Chem. 1999;52:497–505.CrossRefGoogle Scholar
  12. 12.
    Huang C-H, editor. Rare earth coordination chemistry: fundamentals and applications. Singapore: Wiley; 2010.Google Scholar
  13. 13.
    Young DC. Computational chemistry: a practical guide for applying techniques to real- world problems. Hoboken: Wiley; 2001.CrossRefGoogle Scholar
  14. 14.
    NIST Chemistry WebBook, NIST Standard reference database number 69. www.http//webbook.nist/chemistry. Accessed 8 May 2016.
  15. 15.
    Hyperchem available from Hypercube Inc., Gainesville, Florida, USA.Google Scholar
  16. 16.
    Grivel JC. Thermal decomposition of yttrium propionate and butyrate. J Anal Appl Pyrolysis. 2013;101:185–92.CrossRefGoogle Scholar
  17. 17.
    Grivel JC, Guevara MJS, Attique FZY, Tang X, Pallewatta PGPA, Watenphul AQ, Zimmerman MV. Thermal decomposition of yttrium(III) hexaonate in argon. J Anal Appl Pyrolysis. 2015;112:237–43.CrossRefGoogle Scholar
  18. 18.
    Manelis GB, Nazin GM, Rubtsov YT, Strunin VA. Thermal decomposition and combustion of explosives and propellants. Boca Raton: CRC Press; 2003.Google Scholar
  19. 19.
    Liu Y, Bluck D., Brana-Melero F. Static and dynamic simulation of NOx absorption tower based on a hybrid-kinetic equilibrium reaction model. In: Eden MR, Siirola JD, Towler GP, editors. Proceedings of the 8th international conference on foundations of computer-aided process design. Amsterdam: Elsevier; 2014, p. 363.Google Scholar
  20. 20.
    Zak Z, Unfried P, Giester G. The structures of some rare earth basic nitrates [Ln6(~6-O)(~3-OH)8(H2O)12(NO3)6](NO3)2· xH2O, Ln = Y, Gd, Yb, x(Y, Yb) = 4; x(Gd) = 5. A novel rare earth metal cluster of the M6X8 type with interstitial O atom. J Alloys Compd. 1994;205:235–42.CrossRefGoogle Scholar
  21. 21.
    Mahé N, Guillou O, Daiguebonne C, Gérault Y, Caneschi A, Sangregorio C, Chane-Ching JY, Car PE, Roisnel T. Polynuclear lanthanide hydroxo complexes: new chemical precursors for coordination polymers. Inorg Chem. 2005;44:7743–50 (and references therein).CrossRefGoogle Scholar
  22. 22.
    Wells AF. Structural inorganic chemistry. 5th ed. London: Oxford University Press; 1984.Google Scholar
  23. 23.
    Guzik M, Pejchat J, Akira Y, Takashi G, Siczek M, Tadeusz L, Boulon G. Cryst Growth Des. 2014;14(3327–3):4.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Federal University of Mato Grosso do SulCampo GrandeBrazil

Personalised recommendations