Journal of Thermal Analysis and Calorimetry

, Volume 131, Issue 2, pp 949–968 | Cite as

Thermal resistance, microstructure and mechanical properties of type I Portland cement pastes containing low-cost nanoparticles

  • S. M. A. El-Gamal
  • S. A. Abo-El-Enein
  • F. I. El-Hosiny
  • M. S. AminEmail author
  • M. Ramadan


This study aimed to utilize laboratory-prepared nano-silica (NS) and nano-alumina (NA) as low-cost nano-oxides additions for improving the mechanical properties and thermal resistance of hardened ordinary Portland cement (OPC) pastes. NS was synthesized from rice husk ash in the absence of any surfactant, while NA was synthesized from AlCl3 in the presence of CTAB as a surfactant. The average particle sizes of synthesized NS and NA were 30 and 40 nm, respectively. Nano-silica or nano-alumina was added to OPC as a single phase with different ratios of 0.5, 1, 2 and 3 by mass % of OPC. The physico-chemical characteristics of different OPC-NS and OPC-NA hardened pastes were studied after 1, 3, 7, 14, 28 and 90 days of hydration. The resistance of the hardened composites for firing was evaluated for specimens cured for 28 days under tap water and then fired at 300, 600 and 800 °C for 3 h. The fired specimens were cooled by two methods: gradual cooling and rapid cooling. The compressive strength test was performed for all mixes at each firing temperature. The compressive strength results revealed that the optimum addition of NS is 1, whereas the optimum addition of NA is 0.5 by mass % of OPC. XRD, TG/DTG and SEM results indicated that ill-crystalline and nearly amorphous C–S–H, C–A–S–H and C–A–H were the main hydration products.


Nano-silica Nano-alumina Thermal resistance Pozzolanic reaction Compressive strength 


  1. 1.
    Pacheco-Torgal F, Jalali S. Nanotechnology: advantages and drawbacks in the field of construction and building materials. Constr Build Mater. 2011;25(2):582–90.CrossRefGoogle Scholar
  2. 2.
    Sanchez F, Sobolev K. Nanotechnology in concrete—a review. Constr Build Mater. 2010;24(11):2060–71.CrossRefGoogle Scholar
  3. 3.
    Amin MS, El-Gamal SMA, Hashem FS. Fire resistance and mechanical properties of carbon nanotubes—clay bricks wastes (Homra) composites cement. Constr Build Mater. 2015;98:237–49.CrossRefGoogle Scholar
  4. 4.
    Heikal M, Ali AI, Ismail MN, Ibrahim SANS. Behavior of composite cement pastes containing silica nano-particles at elevated temperature. Constr Build Mater. 2014;70:339–50.CrossRefGoogle Scholar
  5. 5.
    El-Gamal SMA, Amin MS, Ramadan M. Hydration characteristics and compressive strength of hardened cement pastes containing nanometakaolin. HBRC. 2017;13:114–21.CrossRefGoogle Scholar
  6. 6.
    Tobon JI, Paya J, Restrepo OJ. Study of durability of Portland cement mortars blended with silica nanoparticles. Constr Build Mater. 2015;80:92–7.CrossRefGoogle Scholar
  7. 7.
    Hashem FS, Amin MS, El-Gamal SMA. Improvement of acid resistance of Portland cement pastes using rice husk ash and cement kiln dust as additives. J Therm Anal Calorim. 2013;11:1391–8.CrossRefGoogle Scholar
  8. 8.
    Heikal M, Abd El Aleem S, Morsi WM. Characteristics of blended cements containing nano-silica. HBRC. 2013;9:243–55.CrossRefGoogle Scholar
  9. 9.
    Abd El-aleem S, Ragab A. Physico-mechanical properties and microstructure of blended cement incorporating nano-silica. IJERT. 2014;3(7):339–58.Google Scholar
  10. 10.
    Abd El-Aleem S, Ragab A. Chemical and physico-mechanical properties of composite cements containing micro-and nano-silica. IJCIET. 2015;6(5):45–64.Google Scholar
  11. 11.
    El-Didamony H, Abd El-Aleem S, Ragab A. Hydration behavior of composite cement containing fly ash and nanosized-SiO2. AJNRA. 2016;4(2):6–16.Google Scholar
  12. 12.
    Heikal M, Abd El-Aleem S, Morsi WM. Durability of composite cements containing granulated blast-furnace slag and silica nano-particles. IJEMS. 2016;23(1):88–100.Google Scholar
  13. 13.
    Singh LP, Karade SR, Bhattacharyya SK, Yousuf MM, Ahalawat S. Beneficial role of nanosilica in cement based materials—a review. Constr Build Mater J. 2013;47:1069–77.CrossRefGoogle Scholar
  14. 14.
    Hou P, Kawashima S, Kong D, Corr DJ, Qian J, Shah SP. Modification effects of colloidal nano SiO2 on cement hydration and its gel property. Compos B. 2013;45:440–8.CrossRefGoogle Scholar
  15. 15.
    Nazari A, Riahi S. Microstructural, thermal, physical and mechanical behavior of the self-compacting concrete containing SiO2 nanoparticles. Mater Sci Eng A. 2010;527:7663–72.CrossRefGoogle Scholar
  16. 16.
    El-Gamal SMA, Hashem FS, Amin MS. Influence of carbon nanotubes, nanosilica and nanometakaolin on some morphological-mechanical properties of oil well cement pastes subjected to elevated water curing temperature and regular room air curing temperature. Constr Build Mater. 2017;146:531–46.CrossRefGoogle Scholar
  17. 17.
    Jo BW, Kim CH, Tae G, Park JB. Characteristics of cement mortar with nano-SiO2 particles. Constr Build Mater. 2007;21:1351–5.CrossRefGoogle Scholar
  18. 18.
    Lina KL, Changb WC, Linc DF, Luoc HL, Tsaic MC. Effects of nano-SiO2 and different ash particle sizes on sludge ash–cement mortar. Environ Manag. 2008;88:708–14.Google Scholar
  19. 19.
    Said AM, Zeidan MS, Bassuoni MT, Tian Y. Properties of concrete incorporating nano-silica. Constr Build Mater. 2012;36:838–44.CrossRefGoogle Scholar
  20. 20.
    Gaitero JJ, Campillo I, Guerrero A. Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cem Concr Res. 2008;38:1112–8.CrossRefGoogle Scholar
  21. 21.
    Hosseinpourpia R, Varshoee A, Soltani M, Hosseini P, Tabari HZ. Production of waste bio-fiber cement-based composites reinforced with nano-SiO2 particles as a substitute for asbestos cement composites. Constr Build Mater. 2012;31:105–11.CrossRefGoogle Scholar
  22. 22.
    Zhang MH, Islam J, Peethamparan S. Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag. Cem Concr Compos. 2012;34:650–62.CrossRefGoogle Scholar
  23. 23.
    Nazari A, Riahi S. Al2O3 nanoparticles in concrete and different curing media. Energy Build. 2011;43:1480–8.CrossRefGoogle Scholar
  24. 24.
    Farzadnia N, Ali AAA, Demirboga R. Characterization of high strength mortars with nano alumina at elevated temperatures. Cem Concr Res. 2013;54:43–54.CrossRefGoogle Scholar
  25. 25.
    Nazari A, Riahi S, Riahi S, Shamekhi SF, Khademno A. Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete. J Am Sci. 2010;6(5):6–9.Google Scholar
  26. 26.
    Barbhuiya S, Mukherjee S, Nikraz H. Effects of nano-Al2O3 on early-age microstructural properties of cement paste. Constr Build Mater. 2014;52:189–93.CrossRefGoogle Scholar
  27. 27.
    Heikal M, Ismail MN, Ibrahim NS. Physico-mechanical, microstructure characteristics and fire resistance of cement pastes containing Al2O3 nano-particles. Constr Build Mater. 2015;91:232–42.CrossRefGoogle Scholar
  28. 28.
    Land G, Stephan D. Controlling cement hydration with nanoparticles. Cem Concr Compos. 2015;57:64–7.CrossRefGoogle Scholar
  29. 29.
    Li Z, Wang H, He S, Lu Y, Wang M. Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater Lett. 2006;60:356–9.CrossRefGoogle Scholar
  30. 30.
    Essawy AA, Abd El Aleem S. Physico-mechanical properties, potent adsorptive and photocatalytic efficacies of sulfate resisting cement blends containing micro silica and nano-TiO2. Constr Build Mater. 2014;52:1–8.CrossRefGoogle Scholar
  31. 31.
    Guo MZ, Ling TC, Poon CS. Nano-TiO2-based architectural mortar for NO removal and bacteria inactivation: influence of coating and weathering conditions. Cem Concr Compos. 2013;36:101–8.CrossRefGoogle Scholar
  32. 32.
    Cardenas C, Tobon JI, Garcia C, Vila J. Functionalized building materials: photocatalytic abatement of NOx by cement pastes blended with TiO2 nanoparticles. Constr Build Mater. 2012;36:820–5.CrossRefGoogle Scholar
  33. 33.
    Yousefi A, Allahverdi A, Hejazi P. Effective dispersion of nano-TiO2 powder for enhancement of photocatalytic properties in cement mixes. Constr Build Mater. 2013;41:224–30.CrossRefGoogle Scholar
  34. 34.
    Meng T, Yu Y, Qian X, Zhan S, Qian K. Effect of nano-TiO2 on the mechanical properties of cement mortar. Constr Build Mater. 2012;29:241–5.CrossRefGoogle Scholar
  35. 35.
    Jalal M, Fathi M, Farzad M. Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self-compacting concrete. Mech Mater. 2013;61:11–27.CrossRefGoogle Scholar
  36. 36.
    Chen J, Kou SC, Poon CS. Hydration and properties of nano-TiO2 blended cement composites. Cem Concr Compos. 2012;34:642–9.CrossRefGoogle Scholar
  37. 37.
    Soltanian H, Khalokakaie R, Ataei M, Kazemzadeh E. Fe2O3 nanoparticles improve the physical properties of heavy-weight wellbore cements: a laboratory study. J Nat Gas Sci Eng. 2015;26:695–701.CrossRefGoogle Scholar
  38. 38.
    Khoshakhlagh A, Nazari A, Khalaj G. Effects of Fe2O3 nanoparticles on water permeability and strength assessments of high strength self-compacting concrete. Mater Sci Technol. 2012;28(1):73–82.CrossRefGoogle Scholar
  39. 39.
    Heikal M. Characteristics, textural properties and fire resistance of cement pastes containing Fe2O3 nano-particles. J Therm Anal Calorim. 2016;26:1077–87.CrossRefGoogle Scholar
  40. 40.
    Ataie FF, Juenger MCG, Taylor-Lange SC, Riding KA. Comparison of the retarding mechanisms of zinc oxide and sucrose on cement hydration and interactions with supplementary cementitious materials. Cem Concr Res. 2015;72:128–36.CrossRefGoogle Scholar
  41. 41.
    Nochaiya T, Sekine Y, Choopun S, Chaipanich A. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive. J Alloys Compd. 2015;630:1–10.CrossRefGoogle Scholar
  42. 42.
    Quercia G, Spiesz P, Hüsken G, Brouwers HJH. SSC modification by use of amorphous nano-silica. Cem Concr Compos. 2014;45:69–81.CrossRefGoogle Scholar
  43. 43.
    Sarami N, Mahdavian L. Mechanical properties of artificial stones produced from sludge of stone-cutting factories (SSCF): the effects of nano-fillers (αTiO2 and ZnO nanoparticles). Silicon J. 2017;9:165–72.CrossRefGoogle Scholar
  44. 44.
    Kong D, Su Y, Du X, Yang Y, Wei S, Shah SP. Influence of nano-silica agglomeration on fresh properties of cement pastes. Constr Build Mater. 2013;43:557–62.CrossRefGoogle Scholar
  45. 45.
    Amick JA. Purification of rice hulls as a source of solar grade silicon for solar cells. Electrochem Soc. 1982;129:864–6.CrossRefGoogle Scholar
  46. 46.
    De Souza MF, Magalhaes WLE, Persegil MC. Silica derived from burned rice hulls. Mater Res. 2002;5:467–74.CrossRefGoogle Scholar
  47. 47.
    Hanna SB, Farag LM, Mansour NAL. Pyrolysis and combustion of treated and untreated rice hulls. Thermochim Acta. 1984;81:77–86.CrossRefGoogle Scholar
  48. 48.
    Real C, Alcala MD, Criado JM. Preparation of silica from rice husks. Am Ceram Soc. 1996;79:2012–6.CrossRefGoogle Scholar
  49. 49.
    Teng H, Lin HC, Ho JA. Thermogravimetric analysis on global mass loss kinetics of rice hull pyrolysis. Ind Eng Chem Res. 1997;36:3974–7.CrossRefGoogle Scholar
  50. 50.
    Liou TH. Preparation and characterization of nano-structured silica from rice husk. Mater Sci Eng A. 2004;364:313–23.CrossRefGoogle Scholar
  51. 51.
    Carmona VB, Oliveira RM, Silva WTL, Mattoso LHC, Marconcini JM. Nanosilica from rice husk: extraction and characterization. Ind Crops Prod. 2013;43:291–6.CrossRefGoogle Scholar
  52. 52.
    Rafiee E, Shahebrahimi S, Feyzi M, Shaterzadeh M. Optimization of synthesis and characterization of nanosilica produced from rice husk (a common waste material). Int Nano Lett. 2012;2:29.CrossRefGoogle Scholar
  53. 53.
    Liou TH, Yang CC. Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Mater Sci Eng B. 2011;176:521–9.CrossRefGoogle Scholar
  54. 54.
    Thuadaij N, Nuntiya A. Preparation of nanosilica powder from rice husk ash by precipitation method. Chiang Mai J Sci. 2008;35:206–11.Google Scholar
  55. 55.
    Campillo I, Guerrero A, Dolado JS, Porro A, Ibanez JA, Goni S. Improvement of initial mechanical strength by nanoalumina in belite cements. Mater Lett. 2007;61:1889–92.CrossRefGoogle Scholar
  56. 56.
    Heikal M. Effect of elevated temperature on the physico-mechanical and microstructural properties of blended cement pastes. Build Res. 2008;56:157–72.Google Scholar
  57. 57.
    Ahmed MA, Abdel-Messih MF. Structural and nano-composite features of TiO2–Al2O3 powders prepared by sol–gel method. Alloys Compd. 2011;509:2154–9.CrossRefGoogle Scholar
  58. 58.
    Abo-El-Enein SA, Daimon M, Ohsawa S, Kondo R. Hydration of low porosity slag–lime pastes. Cem Concr Res. 1972;4:299–312.CrossRefGoogle Scholar
  59. 59.
    El-Gamal SMA, Hashem FS, Amin MS. Thermal resistance of hardened cement pastes containing vermiculite and expanded vermiculite. J Therm Anal Calorim. 2012;109:217–26.CrossRefGoogle Scholar
  60. 60.
    Abo-El-Enein SA, El-Gamal SMA, Aiad IA, Azab MM, Mohamed OA. Early hydration characteristics of oil well cement pastes admixed with newly prepared organic admixture. HBRC. 2016;. doi: 10.1016/j.hbrcj.2016.09.001.Google Scholar
  61. 61.
    Krakoiak KJ, Thomas JJ, Musso S, James S, Akono AT, Ulm FJ. Nano-chemo-mechanical signature of conventional oil-well cement systems: effect of elevated temperature and curing time. Cem Concr Res. 2015;67:103–21.CrossRefGoogle Scholar
  62. 62.
    Chaipanich A, Nochaiya T. Thermal analysis and microstructure of Portland cement–fly ash–silica fume pastes. J Therm Anal Calorim. 2010;99:487–93.CrossRefGoogle Scholar
  63. 63.
    Nochaiya T, Wongkeo W, Pimraksa K, Chaipanich A. Microstructural, physical, and thermal analyses of Portland cement–fly ash–calcium hydroxide blended pastes. J Therm Anal Calorim. 2010;100:101–8.CrossRefGoogle Scholar
  64. 64.
    Amer AA. Thermal analysis of hydrated fly ash–lime pastes. J Therm Anal Calorim. 1998;54:837–43.CrossRefGoogle Scholar
  65. 65.
    Amin MS, Abo-El-Enein SA, Abdel Rahman A, Alfalous KA. Artificial pozzolanic cement pastes containing burnt clay with and without silica fume. J Therm Anal Calorim. 2012;107:1105–15.CrossRefGoogle Scholar
  66. 66.
    Rojas MF, Cabrera J. The effect of temperature on the hydration rate and stability of the hydration phases of metakaolin–lime–water systems. Cem Concr Res. 2002;32:133–8.CrossRefGoogle Scholar
  67. 67.
    El-Gamal SMA, Hashem FS. Enhancing the thermal resistance and mechanical properties of hardened Portland cement pastes by using pumice and Al2O3. J Therm Anal Calorim. 2017;128:15–27.CrossRefGoogle Scholar
  68. 68.
    Lublóy E, Kopecskó K, Balázs GL, Restás A, Szilágyi IM. Improved fire resistance by using Portland-pozzolana or Portland-fly ash cements. J Therm Anal Calorim. 2017;129(2):925–36.CrossRefGoogle Scholar
  69. 69.
    Abo-El-Enein SA, Hashem FS, Amin MS, Sayed DM. Physicochemical characteristics of cementitious building materials derived from industrial solid wastes. Constr Build Mater. 2016;126:983–90.CrossRefGoogle Scholar
  70. 70.
    Abo-El-Enein SA, Heikal M, Amin MS, Negm HH. Reactivity of dealuminated kaolin and burnt kaolin using cement kiln dust or hydrated lime as activators. Constr Build Mater. 2013;47:1451–60.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • S. M. A. El-Gamal
    • 1
  • S. A. Abo-El-Enein
    • 1
  • F. I. El-Hosiny
    • 1
  • M. S. Amin
    • 1
    • 2
    Email author
  • M. Ramadan
    • 1
  1. 1.Chemistry Department, Faculty of ScienceAin Shams UniversityCairoEgypt
  2. 2.Chemistry Department, Faculty of ScienceTaibah UniversityMedinaSaudi Arabia

Personalised recommendations