Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 131, Issue 1, pp 281–287 | Cite as

Electronic structure and thermoelectric properties of narrow-band-gap intermetallic compound Al2Fe3Si3

  • Y. Takagiwa
  • Y. Isoda
  • M. Goto
  • Y. Shinohara
Article

Abstract

We investigated the electronic structure and thermoelectric properties of a ternary intermetallic compound Al2Fe3Si3 composed only of abundant elements. First-principles band structure calculations implied that the target compound Al2Fe3Si3 forms a narrow band gap of a few hundred meV near the Fermi level, indicating that both p- and n-type thermoelectric properties can be obtained by shifting the chemical potential. We present the thermoelectric properties of the narrow-band-gap intermetallic compound Al2Fe3Si3, which was synthesized by arc melting and spark plasma sintering. The conduction type could be controlled through changing the Al/Si ratio. The measured Seebeck coefficients were +55 and −90 μV K−1 for p- and n-type materials, respectively. The obtained power factor was 370–400 μW m−1 K−2 in a mid-temperature region for both p- and n-type materials. Because of the low crystal symmetry of Al2Fe3Si3, the phonon thermal conductivity at 300 K exhibited a relatively low value of 4.5–5.5 W m−1 K−1, despite being composed of relatively light elements. The estimated dimensionless figure of merit was found to be less than 0.04, which should be largely enhanced for practical applications.

Keywords

Thermoelectric properties Narrow band gap Intermetallic compound Band structure calculation Common elements 

Notes

Acknowledgements

This work is supported by KAKENHI Grant Nos. 26709051 and 17H03421 from the Japan Society for the Promotion of Science (JSPS) and “Materials Research by Information Integration” Initiative (MI2I) project of the Support Program for Starting Up Innovation Hub from Japan Science and Technology Agency (JST). One of the authors (Y.T.) acknowledges Prof. Dr. Kaoru Kimura in University of Tokyo, Japan, for kind support on synthesis and measurements.

References

  1. 1.
    Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7:105–14. doi: 10.1038/nmat2090.CrossRefGoogle Scholar
  2. 2.
    Dehkordi AM, Zebarjadi M, He J, Tritt TM. Thermoelectric power factor: enhancement mechanisms and strategies for higher performance thermoelectric materials. Mater Sci Eng R. 2015;97:1–22. doi: 10.1016/j.mser.2015.08.001.CrossRefGoogle Scholar
  3. 3.
    Zaitsev VK, Fedorov MI, Gurieva EA, Eremin IS, Konstantinov PP, Samunin AY, Vedernikov MV. Highly effective Mg2Si1−xSnx thermoelectrics. Phys Rev B. 2006;74:045207–1–5. doi:  10.1103/PhysRevB.74.045207.
  4. 4.
    Kojima T. Semiconducting and thermoelectric properties of sintered iron disilicide. Phys Stat Sol. 1989;111:233–42. doi: 10.1002/pssa.2211110124.CrossRefGoogle Scholar
  5. 5.
    Miyazaki Y, Igarashi D, Hayashi K, Kajitani T, Yubuta K. Modulated crystal structure of chimney-ladder higher manganese silicides MnSiγ (γ = 1.74). Phys Rev B. 2008;78:214104–1–8. doi: 10.1103/PhysRevB.78.214104.
  6. 6.
    Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 2012;489:414–8. doi: 10.1038/nature11439.CrossRefGoogle Scholar
  7. 7.
    Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder GJ. Copper ion liquid-like thermoelectrics. Nat Mater. 2012;11:422–5. doi: 10.1038/nmat3273.CrossRefGoogle Scholar
  8. 8.
    Tobita K, Sato N, Kitahara K, Takagiwa Y, Kimura K. Effect of anomalous crystal structure of iron aluminides Fe2Al5 and Fe4Al13: low phonon thermal conductivity and potentiality as thermoelectric materials. Mater Trans. 2016;57:1045–9. doi: 10.2320/matertrans.MF201607.CrossRefGoogle Scholar
  9. 9.
    Raghavan V. Al–Fe–Si (aluminum–iron–silicon). J Phase Equilibria Diffus. 2009;30(2):184–8. doi: 10.1007/s11669-009-9486-1.CrossRefGoogle Scholar
  10. 10.
    Marker MCJ, Skolyszewska-Kühberger B, Effenberger HS, Schmetterer C, Richter KW. Phase equilibria and structural investigations in the system Al–Fe–Si. Intermetallics. 2011;19(12):1919–29. doi: 10.1016/j.intermet.2011.05.003.CrossRefGoogle Scholar
  11. 11.
    Yanson TI, Manyako MB, Bodak OI, German NV, Zarechnyuk OS, Cerný R, Pacheco JV, Yvon K. Triclinic Fe3Al2Si3 and orthorhombic Fe3Al2Si4 with new structure types. Acta Cryst. 1996;C52:2964–7. doi: 10.1107/S0108270196008694.Google Scholar
  12. 12.
    Novák P, Michalcová A, Vodĕrová M, Šíma M, Šerák J, Vojtĕch D, Wienerová K. Effect of reactive sintering conditions on microstructure of Fe–Al–Si alloys. J Alloys Compd. 2010;493:81–6. doi: 10.1016/j.jallcom.2009.12.040.CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–8. doi: 10.1103/PhysRevLett.77.3865.CrossRefGoogle Scholar
  15. 15.
    Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13:5188–92. doi: 10.1103/PhysRevB.13.5188.CrossRefGoogle Scholar
  16. 16.
    Madsen GKH, Singh DJ. BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun. 2006;175(1):67–71. doi: 10.1016/j.cpc.2006.03.007.CrossRefGoogle Scholar
  17. 17.
    Sales BC, Delaire O, McGuire MA, May AF. Thermoelectric properties of Co-, Ir-, and Os-doped FeSi alloys: evidence for strong electron-phonon coupling. Phys Rev B. 2011;83:125209–1–7. doi: 10.1103/PhysRevB.83.125209.
  18. 18.
    Kim HS, Gibbs ZM, Tang Y, Wang H, Snyder GJ. Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 2015;3:041506–1–5. doi: 10.1063/1.4908244.
  19. 19.
    Takeuchi T. Unusual increase of electron thermal conductivity caused by a pseudogap at the Fermi level. J Electron Mater. 2009;38(7):1354–9. doi: 10.1007/s11664-009-0662-1.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Center for Materials Research by Information Integration (CMI2), Research and Services Division of Materials Data and Integrated System (MaDIS)National Institute for Materials ScienceTsukubaJapan

Personalised recommendations