Journal of Thermal Analysis and Calorimetry

, Volume 130, Issue 2, pp 639–651 | Cite as

Thermal behaviour of the TiO2-based gels obtained by microwave-assisted sol–gel method

  • Irina Stanciu
  • Luminita Predoana
  • Jeanina Pandele Cusu
  • Silviu Preda
  • Mihai Anastasescu
  • Katarina Vojisavljević
  • Barbara Malič
  • Maria Zaharescu


In order to establish the influence of the preparation method on thermal behaviour of gels obtained by the sol–gel and microwave-assisted sol–gel methods, a comparative thermal analysis study was conducted by the thermogravimetric and differential thermal analysis (TG/DTG/DTA) and evolved gas analysis (EGA) on TiO2 and V2O5-doped TiO2 gels, where TiO2:V2O5 molar ratio was set to 99.95:0.05 and 98.0:2.0. In contrast to TiO2 gels, for which the thermal behaviour was not significantly influenced by the preparation method, the microwave-irradiated binary samples showed a more complex and prolonged decomposition compared to their non-irradiated counterparts. This observation was correlated with influence of microwaves in enhancing the reaction rate between the Ti and V reagents leading to formation of more complex compositions of gels. Based on TG/DTG/DTA results, the temperatures of 300 and 450 °C were chosen for the processing of powders in air. All samples thermally treated at 300 and 450 °C crystallized in a single anatase phase except the TiO2:V2O5 with a molar ratio 99.95:0.05, obtained by microwave-assisted sol–gel method that contains also small amount of rutile phase. At 550 °C all samples contain mixture of anatase and rutile phases.


Microwave-assisted sol–gel method TiO2-based gels Thermal behaviour 



This work was supported by the research programme “Materials Science and Advanced Methods for Characterization” of “Ilie Murgulescu” Institute of Physical Chemistry, financed by the Roumanian Academy and project—PN-IIPT-PCCA-2013-4(0864)-(94/2014)—“Cleanphotocoat”. Support of the EU (ERDF) and Roumanian Government, which allowed for acquisition of the research infrastructure under POS-CCE O 2.2.1 project INFRANANOCHEM—Nr.19/01.03.2009, is gratefully acknowledged. Barbara Malič and Katarina Vojisavljević acknowledge the support of Slovenian Research Agency (Programme P2-0105).


  1. 1.
    Cao G. Nanostructures and nanomaterials, synthesis, properties and applications. London: Imperial College Press; 2004.CrossRefGoogle Scholar
  2. 2.
    Savolainen K, Pylkkanen L, Norppa H, Falck G, Lindberg H, Tuomi T, Vippola M, Alenius H, Hameri K, Koivisto J, Brouwer D, Mark D, Bard D, Berges M, Jankowska E, Posniak M, Farmer P, Singh R, Krombach F, Bihari P, Kasper G, Seipenbusch M. Nanotechnologies, engineered nanomaterials and occupational health and safety—a review. Safety Sci. 2010;48:957–63.CrossRefGoogle Scholar
  3. 3.
    Athar T. Metal oxide nanopowder. In: Ahmed W, Jack MJ, editors. Emerging nanotechnologies for manufacturing. Norwich: William Andrews; 2015. p. 343–401.CrossRefGoogle Scholar
  4. 4.
    Vrinceanu N, Tanasa D, Hristodor CM, Brinza F, Popovici E, Gherca D, Pui A, Coman D, Carsmariu A, Bistricianu I, Broasca G. Synthesis and characterization of zinc oxide nanoparticles application to textiles as thermal barriers. J Therm Anal Calorim. 2013;111:1107–19.CrossRefGoogle Scholar
  5. 5.
    Canas-Carrell JE, Li S, Parra AM, Shrestha B. Metal oxide nanomaterials: health and environmental effects. In: Njuguna J, Pielichowski K, Zhu H, editors. Health and environmental safety of nanomaterials. Cambridge: Woodhead Publishing Limited; 2014. p. 200–21.CrossRefGoogle Scholar
  6. 6.
    Byranvand MM, Kharat AN, Fatholahi L, Beiranvand ZM. A review on synthesis of nano-TiO2 via different methods. JNS. 2013;3:1–9.CrossRefGoogle Scholar
  7. 7.
    Shon HK, Phuntsho S, Okour Y, Cho DL, Kim JB, Na S, Kim JH. Visible light responsive titanium dioxide (TiO2)—a review. J Ind Eng Chem. 2008;19:1–16.Google Scholar
  8. 8.
    Nah YC, Paramasivam I, Schmuki P. Doped TiO2 and TiO2 nanotubes: synthesis and applications. ChemPhysChem. 2010;11:2698–713.CrossRefGoogle Scholar
  9. 9.
    Tahir M, Amin NAS. Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energ Convers Manage. 2013;76:194–214.CrossRefGoogle Scholar
  10. 10.
    Vijayalakshmi K, Monamary A. Novel hydrogen sensor based on p-type Ni:TiO2 nanorods fabricated on ITO substrate. J Mater Sci: Mater El. 2016;27:140–5.Google Scholar
  11. 11.
    O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353:737–40.CrossRefGoogle Scholar
  12. 12.
    Wei X, Yang Z, Tay SL, Gao W. Photocatalytic TiO2 nanoparticles enhanced polymer antimicrobial coating. Appl Surf Sci. 2014;290:274–9.CrossRefGoogle Scholar
  13. 13.
    Akpan UG, Hameed BH. The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl Catal A-Gen. 2010;375:1–11.CrossRefGoogle Scholar
  14. 14.
    Choi J, Park H, Hoffmann MR. Combinatorial doping of TiO2 with platinum (Pt) chromium (Cr), vanadium (V), and nickel (Ni) to achieve enhanced photocatalytic activity with visible light irradiation. J Mater Res. 2010;25:149–58.CrossRefGoogle Scholar
  15. 15.
    Borkar SA, Dharwadkar SR. Temperatures and kinetics of anatase to rutile transformation in doped TiO2 heated in microwave field. J Therm Anal Calorim. 2004;78:761–7.CrossRefGoogle Scholar
  16. 16.
    Liu S, Xie T, Chen Z, Wu J. Highly active V-TiO2 for photocatalytic degradation of methyl orange. Appl Surf Sci. 2009;255:8587–92.CrossRefGoogle Scholar
  17. 17.
    Li H, Zhao G, Chen Z, Han G, Song B. Low temperature synthesis of visible light-driven vanadium doped titania photocatalyst. J Colloid Interf Sci. 2010;344:247–50.CrossRefGoogle Scholar
  18. 18.
    Lin Y-H, Hung W-C, Chen Y-C, Chu H. Photocatalytic Degradation of 1, 2-dichloroethane by V/TiO2: the mechanism of photocatalytic reaction and byproduct. Aerosol Air Qual Res. 2014;14:280–92.Google Scholar
  19. 19.
    Pulisova P, Bohacek J, Subrt J, Szatmary L, Bezdicka P, Vecernıkova E, Balek V. Thermal behaviour of titanium dioxide nanoparticles prepared by precipitation from aqueous solutions. J Therm Anal Calorim. 2010;101:607–13.CrossRefGoogle Scholar
  20. 20.
    Lu CW, Cao Y, Li H, Webb C, Pan WP. Synthesis of TiO2 based on hydrothermal methods using elevated pressures and microwave conditions. J Therm Anal Calorim. 2014;116:1241–8.CrossRefGoogle Scholar
  21. 21.
    Crisan M, Zaharescu M, Crisan D, Ion R, Manolache M. Vanadium doped sol-gel TiO2 coatings. J Sol-Gel Sci Techn. 1998;13:775–8.CrossRefGoogle Scholar
  22. 22.
    Dascalescu T, Todan L, Rusu A, Preda S, Andronescu C, Culita D, Munteanu C, Zaharescu M. Nanosized Al2O3–TiO2 oxide powder with enhanced porosity obtained by sol-gel method. Rev Roum Chim. 2014;59:125–34.Google Scholar
  23. 23.
    Worzakowsk M. Thermal properties of neryl long-chain esters obtained under microwave irradiation. J Therm Anal Calorim. 2015;120:1715–22.CrossRefGoogle Scholar
  24. 24.
    Xu X-L, Lu Y-H, Xu L-T, Xie F, Pei Z-C, Shuai Q. Microwave synthesis, crystal structures, and low-temperature heat capacities of two novel alkaline earth metal coordination polymers featuring O-ferrocecarbonyl benzoic acid. J Therm Anal Calorim. 2015;119:2053–62.CrossRefGoogle Scholar
  25. 25.
    Kappe CO, Pieber B, Dallinger D. Microwave effects in organic synthesis: myth or reality? Angew Chem Int Edit. 2013;52:1088–94.CrossRefGoogle Scholar
  26. 26.
    Dudley GB, Richert R, Stiegman AE. On the existence of and mechanism for microwave specific reaction rate enhancement. Chem Sci. 2015;6:2144–52.CrossRefGoogle Scholar
  27. 27.
    Leonelli C, Lojkowski W. Main development directions in the application of microwave irradiation to the synthesis of nanopowders. Chem Today. 2007;25:34–8.Google Scholar
  28. 28.
    Das S, Mukhopadhyay AK, Datta S, Basu D. Prospects of microwave processing: an overview. B Mater Sci. 2009;32:1–13.CrossRefGoogle Scholar
  29. 29.
    Kharade RR, Patil KR, Patil PS, Bhosale PN. Novel microwave assisted sol–gel synthesis (MW-SGS) and electrochromic performance of petal like h-WO3 thin films. Mater Res Bull. 2012;47:1787–93.CrossRefGoogle Scholar
  30. 30.
    Akbar A, Riaz S, Ashraf R, Naseem S. Magnetic and magnetization properties of iron oxide thin films by microwave assisted sol–gel route. J Sol-Gel Sci Techn. 2015;74:320–8.CrossRefGoogle Scholar
  31. 31.
    Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Edit. 2011;50:11312–59.CrossRefGoogle Scholar
  32. 32.
    Li Y, Yan W. Microwave synthesis of zeolite membranes: a review. J Membrane Sci. 2008;316:3–17.CrossRefGoogle Scholar
  33. 33.
    Hanaor DAH, Sorrell CC. Review of the anatase to rutile phase transformation. J Mater Sci. 2011;46:855–74.CrossRefGoogle Scholar
  34. 34.
    Zhang Y-H, Reller A. Phase transformation and grain growth of doped nanosized titania. Mat Sci Eng C. 2002;19:323–6.CrossRefGoogle Scholar
  35. 35.
    Bond GC, Sarkany AJ, Parfitt GD. The vanadium pentoxide-titanium dioxide system: structural investigation and activity for the oxidation of butadiene. J Catal. 1979;57:476–93.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.“Ilie Murgulescu” Institute of Physical ChemistryRomanian AcademyBucharestRomania
  2. 2.Department of Fundamental Sciences and HumanistsMaritime UniversityConstantzaRomania
  3. 3.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations