Journal of Thermal Analysis and Calorimetry

, Volume 130, Issue 2, pp 701–711 | Cite as

Synthesis and thermal stability of cis-dichloro[(E)-ethyl-2-(2-((8-hydroxyquinolin-2-il)methylene)hidrazinyl)acetate-κ2 N]-palladium(II) complex

  • Nebojša N. Begović
  • Milica M. Vasić
  • Vladimir A. Blagojević
  • Nenad R. Filipović
  • Aleksandar D. Marinković
  • Aleksandar Malešević
  • Dragica M. Minić


The structure of new cis-dichloro[(E)-ethyl-2-(2-((8-hydroxyquinolin-2-il)methylene)hidrazinyl)acetate-κ2 N]-palladium(II) complex was determined using a combination of XRD and IR measurements and DFT calculations. Inherent flexibility of its structure is evident from the complexity of its IR spectrum, which could only be theoretically reproduced as a combination of several closely related structures, involving rotation around C–O bond and changes in hydrogen interactions of its –OH group. Its thermal stability and decomposition were studied non-isothermally, and the thermal decomposition mechanism was proposed using correlation with DFT calculations at the molecular level. It was determined that the initial degradation step consists of the release of Cl free radical, which then reacts with both the initial compound and the degradation products. Besides the endothermic steps, there are exothermic ones, contributing to the complex shape of the DSC curve, consisted of overlapping endothermic and exothermic peaks. Deconvolution of DTG curve allowed identification of primary fragments of the initial degradation process and, in conjunction with DFT calculations, construction of the most likely reaction mechanism.


Thermal decomposition Reaction mechanism DFT calculation Reaction kinetics Organometallic complex Thermodynamics 

Supplementary material

10973_2017_6458_MOESM1_ESM.pdf (466 kb)
Supplementary material 1 (PDF 466 kb)


  1. 1.
    Legzdins P, Rettig SJ, Sanchez L. Synthesis, characterization, and some chemical properties of unusual 16-electron dialkyl(η5-cyclopentadienyl)nitrosylmolybdenum and -tungsten Complexes. Organometallics. 1988;7:2394–403.CrossRefGoogle Scholar
  2. 2.
    McDonagh AM, Humphrey MG, Samoc M, Luther-Davies B. Organometallic complexes for nonlinear optics. 17. synthesis, third-order optical nonlinearities, and two-photon absorption cross section of an alkynylruthenium dendrimer. Organometallics. 1999;18:5195–7.CrossRefGoogle Scholar
  3. 3.
    Filipović NR, Bjelogrlić S, Todorović TR, Blagojević VA, Muller CD, Marinković A, Vujćić M, Janović B, Malešević AS, Begović N, Senćanski M, Minić DM. Ni(II) complex with bishydrazone ligand: synthesis, characterization, DNA binding studies and proapoptotic and pro-differentiation induction in human cancerous cell lines. RSC Adv. 2016;6:108726–40.CrossRefGoogle Scholar
  4. 4.
    Meneghetti MR, Meneghetti SMP. Sn(IV)-based organometallics as catalysts for the production of fatty acid alkyl esters. Catal Sci Technol. 2015;5:765–71.CrossRefGoogle Scholar
  5. 5.
    Abd El-Wahab H, Abd El-Fattah M, Ahmed AH, Elhenawy AA, Alian NA. Synthesis and characterization of some arylhydrazone ligand and its metal complexes and their potential application as flame retardant and antimicrobial additives in polyurethane for surface coating. J Organomet Chem. 2015;791:99–106.CrossRefGoogle Scholar
  6. 6.
    Chen Z, Wu Y, He C, Wang B, Gu D, Gan F. Insights into the physical basis of metal(II) hydrazone complexes with isoxazole and barbituric acid moieties for recordable blu-ray media. Synth Met. 2010;160:2581–6.CrossRefGoogle Scholar
  7. 7.
    Shankarwar SG, Nagolkar BB, Shelke VA, Chondhekar TK. Synthesis, spectral, thermal and antimicrobial studies of transition metal complexes of 14-membered tetraaza[N4] macrocyclic ligand. Spectrochim Acta A. 2015;145:188–93.CrossRefGoogle Scholar
  8. 8.
    Selvakumar R, Geib SJ, Premkumar T, Govindarajan S. Synthesis, spectroscopic, thermal and XRD studies of aminoguanidinium copper and cadmium oxalates. J Therm Anal Calorim. 2016;124:375–85.CrossRefGoogle Scholar
  9. 9.
    Harmatová Z, Jóna E, Medvecká J, Valigura D, Mojumdar SC. Thermal properties of solid complexes with biologically important heterocyclic ligands. J Therm Anal Calorim. 2015;119:915–9.CrossRefGoogle Scholar
  10. 10.
    Selvakumar R, Geib SJ, Premkumar T, Govindarajan S. Synthesis, structure and thermal properties of a new 1D magnesium sulfoacetate coordination polymer. J Therm Anal Calorim. 2015;121:943–9.CrossRefGoogle Scholar
  11. 11.
    Jin CW, Shen PP, Ren N, Geng LN, Zhang JJ. Structure, luminescent and thermal properties of two novel lanthanide complexes with 3,4-diethoxybenzoic acid and 5,5′-dimethy-2,2′-bipyridine. J Therm Anal Calorim. 2016;126:1549–58.CrossRefGoogle Scholar
  12. 12.
    Begović NN, Blagojević VA, Ostojić SB, Radulović AM, Poleti D, Minić DM. Thermally activated 3D to 2D structural transformation of [Ni2(en)2(H2O)6(pyr)]·4H2O flexible coordination polymer. Mater Chem Phys. 2015;149–150:105–12.CrossRefGoogle Scholar
  13. 13.
    Ristović MŠ, Pavlović MG, Zlatar M, Blagojević V, Anđelković K, Poleti D, Minić DM. Kinetics, mechanism, and DFT calculations of thermal degradation of a Zn(II) complex with N-benzyloxycarbonylglycinato ligands. Monatsh Chem. 2012;143:1133–9.CrossRefGoogle Scholar
  14. 14.
    Hao Y, Peng J, Hu S, Li J, Zhai M. Thermal decomposition of allyl-imidazolium-based ionic liquid studied by TGA–MS analysis and DFT calculations. Thermochim Acta. 2010;501:78–83.CrossRefGoogle Scholar
  15. 15.
    Thomson LM, Hall MB. Theoretical study of the thermal decomposition of N, N′-Diacyl-N, N′-Dialkoxyhydrazines: a Comparison of HF, MP2, and DFT. J Phys Chem A. 2000;104:6247–52.CrossRefGoogle Scholar
  16. 16.
    Peris E, Loach JA, Mata J, Crabtree RH. A Pd complex of a tridentate pincer CNC bis-carbene ligand as a robust homogenous Heck catalyst. Chem Commun. 2001;2:201–2.CrossRefGoogle Scholar
  17. 17.
    Mino T, Shiotsuki M, Yamamoto N, Suenaga T, Sakamoto M, Fujita T, Yamashita M. Palladium-catalyzed allylic alkylation using chiral hydrazones as ligands. J Org Chem. 2001;66:1795–7.CrossRefGoogle Scholar
  18. 18.
    Mino T, Shirae Y, Sakamoto M, Fujita T. Phosphine-free hydrazone-Pd complex as the catalyst precursor for a Suzuki-Miyaura reaction under mild aerobic conditions. J Org Chem. 2005;70:2191–4.CrossRefGoogle Scholar
  19. 19.
    Karimi B, Enders D. New N-heterocyclic carbene palladium complex/ionic liquid matrix immobilized on silica: application as recoverable catalyst for the Heck reaction. Org Lett. 2006;8:1237–40.CrossRefGoogle Scholar
  20. 20.
    Chou CC, Yang CC, Syu HB, Kuo TS. Monomeric Pd(II) complexes with trans-chelated pyrazole ligands as effective pre-catalysts for Heck cross-coupling reaction under mild aerobic conditions. J Organometal Chem. 2013;745–6:387–92.CrossRefGoogle Scholar
  21. 21.
    Teyssot ML, Jarrouse AS, Manin M, Chevry A, Roche S, Norre F, Beaudoin C, Morel L, Boyer D, Mahiou R, Gautier A. Metal-NHC complexes: a survey of anti-cancer properties. Dalton Trans. 2009;35:6894–902.CrossRefGoogle Scholar
  22. 22.
    Kismali G, Emen FM, Yesilkaynak T, Meral O, Demirkiran D, Sel T, Kulcu N. The cell death pathway induced by metal halide complexes of pyridine and derivative ligands in hepatocellular carcinoma cells – necrosis or apoptosis? Eur Rev Med Pharmacol Sci. 2012;16:1001–12.Google Scholar
  23. 23.
    Ray S, Mohan R, Singh JK, Samantaray MK, Shaikh MM, Panda D, Ghosh P. Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes. J Am Chem Soc. 2007;129:15042–53.CrossRefGoogle Scholar
  24. 24.
    Begović NN, Blagojević VA, Ostojić SB, Micić DM, Filipović N, Andjelković K, Minić DM. Thermally induced structural transformations of a series of palladium(II) complexes with N-heteroaromatic bidentate hydrazone ligands. Thermochim Acta. 2014;592:23–30.CrossRefGoogle Scholar
  25. 25.
    Krishamoorthy P, Sathyadevi P, Cowley AH, Butorac RR, Dharmaraj N. Evaluation of DNA binding, DNA cleavage, protein binding and in vitro cytotoxic activities of bivalent transition metal hydrazone complexes. Eur J Med Chem. 2011;46:3376–87.CrossRefGoogle Scholar
  26. 26.
    Suvarapu LN, Seo YK, Baek SO, Ammireddy VR. Review on analytical and biological applications of hydrazones and their metal complexes. J Chem. 2012;9:1288–304.Google Scholar
  27. 27.
    Masoud MS, Ali AE, El-Kaway MYA. Thermal properties of mercury(II) and palladium(II) purine and pyrimidine complexes. J Therm Anal Calorim. 2014;116:183–94.CrossRefGoogle Scholar
  28. 28.
    Uivarosi V, Badea M, Aldea V, Chirigiu L, Olar R. Thermal and spectral studies of palladium(II) and platinum(IV) complexes with dithiocarbamate derivatives. J Therm Anal Calorim. 2013;111:1177–82.CrossRefGoogle Scholar
  29. 29.
    Da Silva C, Da Silva DAM, Rocha FV, Barra CV, Frem RCG, Netto AVG, Mauro AE, De Almeida ET. Synthesis, characterization and thermal behavior of palladium(II) complexes containing 4-iodopyrazole. J Therm Anal Calorim. 2014;117:1327–34.CrossRefGoogle Scholar
  30. 30.
    Farran R, House JE. Thermal decomposition of complexes of palladium(II) chloride with substituted pyridines. J Inorg Nucl Chem. 1972;34:2219–23.CrossRefGoogle Scholar
  31. 31.
    Gomez-Vaamonde C, Alvarez-Valdes A, Navarro-Ranninger MC, Masaguer JR. Synthesis and characterization of Pd(II) complexes with 2-aminopyridine. Transition Met Chem. 1984;9:52–4.CrossRefGoogle Scholar
  32. 32.
    Altomare A, Campi G, Cuocci C, Eriksson L, Giacovazzo C, Moliterni A, Rizzi R, Werner PE. Advances in powder diffraction pattern indexing: N-TREOR09. J Appl Cryst. 2009;42:768–75.CrossRefGoogle Scholar
  33. 33.
    Altomare A, Cuocci C, Giacovazzo C, Moliterni A, Rizzi R, Corriero N, Falcicchio A. EXPO2013: a kit of tools for phasing crystal structures from powder data. J Appl Cryst. 2013;46:1231–5.CrossRefGoogle Scholar
  34. 34.
    Favre-Nicolin V, Černy R. FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction. J Appl Cryst. 2002;35:734–43.CrossRefGoogle Scholar
  35. 35.
    Ferrari M, Lutterotti L. Method for the simultaneous determination of anisotropic residual stresses and texture by X-ray diffraction. J Appl Phys. 1994;76:7246–55.CrossRefGoogle Scholar
  36. 36.
    Izumi F, Momma K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 2007;130:15–20.CrossRefGoogle Scholar
  37. 37.
    Frisch MJ, Trucks GW, Pople JA. Gaussian 09. Revision B2. Pittsburgh: Gaussian Inc; 2009.Google Scholar
  38. 38.
    Neese F. The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci. 2012;2:73–8.CrossRefGoogle Scholar
  39. 39.
    Sinnecker S, Rajendran A, Klamt A, Diedenhofen M, Neese F. Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (Direct COSMO-RS). J Phys Chem A. 2006;110:2235–45.CrossRefGoogle Scholar
  40. 40.
    Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38:3098–100.CrossRefGoogle Scholar
  41. 41.
    Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–9.CrossRefGoogle Scholar
  42. 42.
    Perdew JP. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B. 1986;33:8822–4.CrossRefGoogle Scholar
  43. 43.
    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–8.CrossRefGoogle Scholar
  44. 44.
    Bader RFW. Atoms in molecules: a quantum theory (International series of monographs on chemistry). Oxford: Clarendon press; 1994.Google Scholar
  45. 45.
    Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580–92.CrossRefGoogle Scholar
  46. 46.
    Parr R, Yang W. Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc. 1984;106:4049–50.CrossRefGoogle Scholar
  47. 47.
    Morell C, Grand A, Toro-Labbe A. New dual descriptor for chemical reactivity. J Phys Chem A. 2005;109:205–12.CrossRefGoogle Scholar
  48. 48.
    Weinhold F, Landis CR. Valency and bonding. New York: Cambridge University Press; 2005.CrossRefGoogle Scholar
  49. 49.
    Su P, Li H. Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys. 2009;131:014102.CrossRefGoogle Scholar
  50. 50.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA. General atomic and molecular electronic structure system. J Comput Chem. 1993;14:1347–63.CrossRefGoogle Scholar
  51. 51.
    Gordon MS, Schmidt MW, Dykstra CE, Frenking G, Kim KS, Scuseria GE. Theory and applications of computational chemistry. Amsterdam: Elsevier; 2005.Google Scholar
  52. 52.
    Jamroz MH. Vibrational energy distribution analysis VEDA 4. Warsaw; 2004–2010.Google Scholar
  53. 53.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  54. 54.
    Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.Google Scholar
  55. 55.
    Barton DHR, Bashiardes G, Fourrey JL. An improved preparation of vinyl iodides. Tetrahedron Lett. 1983;24:1605–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Nebojša N. Begović
    • 1
  • Milica M. Vasić
    • 2
  • Vladimir A. Blagojević
    • 3
  • Nenad R. Filipović
    • 4
  • Aleksandar D. Marinković
    • 5
  • Aleksandar Malešević
    • 6
  • Dragica M. Minić
    • 2
  1. 1.Institute of General and Physical ChemistryBelgradeRepublic of Serbia
  2. 2.Faculty of Physical ChemistryUniversity of BelgradeBelgradeRepublic of Serbia
  3. 3.Institute of Technical Sciences of the Serbian Academy of Science and ArtsBelgradeRepublic of Serbia
  4. 4.Faculty of AgricultureUniversity of BelgradeBelgradeRepublic of Serbia
  5. 5.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeRepublic of Serbia
  6. 6.Faculty of ChemistryUniversity of BelgradeBelgradeRepublic of Serbia

Personalised recommendations