Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 130, Issue 2, pp 623–637 | Cite as

Calorimetric studies of Ag–Sn–Cu dental amalgam alloy powders and their amalgams

  • Nivedita Dutta Chowdhury
  • K. S. GhoshEmail author
Article

Abstract

Differential scanning calorimetry (DSC) technique has been used to examine the reaction sequence in dental amalgam alloy powders of (1) Ag–Cu–Sn lathe-cut particles (single composition type in dentistry terminology), (2) mixture of lathe-cut Ag–Sn–low Cu and spherical particles of Ag–Cu eutectic composition (admix type) and (3) their amalgams, i.e. alloys of liquid Hg and these dental amalgam alloy powders. All the peaks in the DSC curves have been identified and discussed. DSC curves of single composition-type powders showed as many as six distinct peaks, whereas admix-type powders showed only four peaks. Quite interestingly, amalgam of single composition powders exhibited only three peaks, whereas amalgam of admix type displayed four distinct peaks. The noticeable differences of peak positions in the DSC curves of the amalgam powders and their amalgams and the associated chemical reactions have been explained. DSC curves of the alloy powders and their amalgams studied at four different heating rates have showed peak shifting and the variation of change of enthalpy (ΔH) as well with the heating rates (v h). The peak temperatures and the heat evolved and absorbed of all the peaks have been determined with the help of built-in software available in the DSC unit.

Keywords

Ag–Sn–Cu dental amalgam alloy powders Dental amalgams FESEM micrographs XRD DSC 

Notes

Acknowledgements

Authors would like to thank the Director, National Institute of Technology (NIT), Durgapur, India for developing facilities, carrying out research and publishing the results.

References

  1. 1.
    Anusavice KJ. Philip’s science of dental materials. Tenth ed. Philadelphia: W B Saunders; 1996.Google Scholar
  2. 2.
    Chaturvedi TP. An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian J Dent Res. 2009;20:91–8.CrossRefGoogle Scholar
  3. 3.
    O’Brien W. Dental materials: properties and selection. London: Quintessence Publishing Co; 1989.Google Scholar
  4. 4.
    Baghdadi ZD. Preservation-based approaches to restore posterior teeth with amalgam, resin, or a combination of materials. Am J Dent. 2002;15:54–65.Google Scholar
  5. 5.
    Mahler DB. Research on dental amalgam: 1982–1986. Adv Den Res. 1998;2:71–82.CrossRefGoogle Scholar
  6. 6.
    Mitchell RJ, Koike M, Okabe T. Posterior, amalgam, restoration—usage, regulation, and longevity. Dent Clin N Am. 2007;51:573–89.CrossRefGoogle Scholar
  7. 7.
    O’Brien W, Greener WJ, Mahler DB. Dental amalgam. In: Reese JA, Vagela TM, editors. Restorative dental materials. London: Quintessence Publishing Co; 1985.Google Scholar
  8. 8.
    Marshal SJ, Marshal G Jr. Dental amalgam: the materials. Adv Dent Res. 1992;6:94–9.CrossRefGoogle Scholar
  9. 9.
    AlNegrish AR. Reasons for placement and replacement of amalgam restorations in Jordan. Int Dent J. 2005;51:109–15.CrossRefGoogle Scholar
  10. 10.
    Berthold M. Restoratives trend data shows shift in use of materials. ADA News. 2002;33:1–11.Google Scholar
  11. 11.
    Bruke FJ, McHugh S, Hall AC. Amalgam and composite use in UK general dental practice in 2001. Br Dent J. 2003;194:317–24.CrossRefGoogle Scholar
  12. 12.
    Shenoy A. Is it the end of the road for dental amalgam? A critical review. J Conserve Dent. 2008;11:99–107.CrossRefGoogle Scholar
  13. 13.
    Fina P, Gazda A. Thermal analysis of sleeted Sn–Ag–Cu alloys. J Therm Anal Calorim. 1097;2013(112):731–73. doi: 10.1007/s3-012-2583-0.Google Scholar
  14. 14.
    Eespiritu R, Amoorsolo A. DSC analysis of Cu–Zn–Sn shape memory alloy fabricated via electrodeposition route. J Therm Anal Calorim. 1097;2012(107):483–7. doi: 10.1007/s3-011-1465-1.Google Scholar
  15. 15.
    Daoudi MI, Triki A, Redjiaimia A. DSC study of the kinetic parameters of the metastable phases formation during non-isothermal annealing of an Al–Si–Mg alloy. J Therm Anal Calorim. 2011;104:627–33. doi: 10.1007/s10973-010-1099-8.CrossRefGoogle Scholar
  16. 16.
    Perepezko JH. Thermal analysis in metallurgy. In: Shull RD and Joshi A, editors. Warrendale, PA: TMS; 1992.Google Scholar
  17. 17.
    Papazian JM. A calorimetric study of precipitation in aluminium alloy 2219. Metall Trans A. 1981;12:269–80.CrossRefGoogle Scholar
  18. 18.
    Ghosh KS, Das K, Chatterjee UK. Calorimetric studies of 8090 and 1414 Al–Li–Cu–Mg–Zr alloys of conventional and retrogressed and reaged tempers. J Mater Sci. 2007;42:4276–90.CrossRefGoogle Scholar
  19. 19.
    Loomans ME, Fine ME. Tin–silver–copper eutectic temperature and composition. Metal Mater Trans A. 2000;31A:1155–62.CrossRefGoogle Scholar
  20. 20.
    Marjanovic S, Manasijevic D, Minic D, Zivkovic D, Todorovic R. Thermal analysis of some alloys in the Ag–Cu–Sn ternary system. J Optoelectron Adv Mater. 2009;11:175–9.Google Scholar
  21. 21.
    Yen Y, Chen S. Phase equilibria of the Ag–Sn–Cu ternary system. J Mater Res. 2004;19:2298–305.CrossRefGoogle Scholar
  22. 22.
    Sarkar NK. Reconfirmation of the existence of δ2 in dental amalgams. J Mater Sci. 1997;32:79–82.CrossRefGoogle Scholar
  23. 23.
    Brauer GM, Termini DJ, Burns CL. Characterization of components of dental materials and components of tooth structure by differential thermal analysis. J Dent Res. 1970;49:100–10.CrossRefGoogle Scholar
  24. 24.
    Omloo WPFAM, Schuthof J, Arends J. Thermal analysis of dental amalgam. J Dent Res. 1972;51:1552–4.CrossRefGoogle Scholar
  25. 25.
    El-Hadary MS, Kumar A, Fayed A, El-Kady AS. Identification of mercury containing phases in dental amalgams by differential scanning calorimetry. J Therm Anal Calorim. 1984;29:131–7.CrossRefGoogle Scholar
  26. 26.
    Sarkar NK, Iyer CS. Can DSC be used to identify mercury-containing phases in dental amalgams? J Therm Anal Calorim. 1985;30:703–7.CrossRefGoogle Scholar
  27. 27.
    Tsutsumi S, Nakamura M, Ferracane H, Schiller TL, Hanawa T, Okabe T. Thermal analysis of amalgams. Dent Mater. 1988;4:307–11.CrossRefGoogle Scholar
  28. 28.
    Sarkar NK. Intergranular structure in dental amalgams. J Mater Sci Mater Med. 1994;5:171–5.CrossRefGoogle Scholar
  29. 29.
    Sarkar NK. Mechanism of β 1 formation in conventional dental amalgams. J Mater Sci Mater Med. 1995;6:552–6.CrossRefGoogle Scholar
  30. 30.
    Cruickshanks-Boyd DW. Physical metallurgy of dental amalgams 2. Microstructure. J Dent. 1983;11:41–55.CrossRefGoogle Scholar
  31. 31.
    Ferne CA, Asgar K, Peyton FA. Microstructure of dental amalgam. J Dent Res. 1965;44:1002–12.CrossRefGoogle Scholar
  32. 32.
    Grayson W, Marshall JR, Marshal SJ. X-ray diffraction and SEM/EDS analyses of phases in new amalgams. J Oral Rehabil. 1981;8:43–53.CrossRefGoogle Scholar
  33. 33.
    Marshall SJ, Lin JHC, Marshal GW. Cu2O and CuCl2·3Cu(OH)2 corrosion products on copper rich dental amalgams. J Biomed Mater Res. 1982;16:81–5.CrossRefGoogle Scholar
  34. 34.
    Lin JHC, Marshal WG, Marshall SJ. Microstructure of Cu-rich amalgams after corrosion. J Dent Res. 1983;6:112–5.CrossRefGoogle Scholar
  35. 35.
  36. 36.
    Karakaya I, Thomson WT. Phase diagrams of binary systems, ASM International, Metal Handbook, 2001;3:2.37.Google Scholar
  37. 37.
    Oh CS, Shim JH, Lee BJ, Lee DN. A thermodynamic study on Ag–Sb–Sn system. J Alloys Compd. 1996;238:155–66.CrossRefGoogle Scholar
  38. 38.
    Saunders N, Miodownik AP. Metallography, structures and phase diagram, ASM metal handbook 1990. Alloy Phase Diagr. 1973;3(2):178.Google Scholar
  39. 39.
    Shim JH, Oh CS, Lee BJ, Lee DN. Thermodynamic assessment of the Cu-Sn system. Z Metallkunde. 1996; 87:205–12.Google Scholar
  40. 40.
    http://www.metallurgy.nist.gov/phase/solder, U. R. Kattner, NIST; 2000.
  41. 41.
    Deiasi R, Adler PN. Calorimetric studies of 7000 series aluminium alloys: (II) comparison of 7075, 7050, and RX720. Metall Trans A. 1977;8:1117–83.CrossRefGoogle Scholar
  42. 42.
    Hayes FH, Lukas HL, Effenberg G, Petzow G. A thermodynamic optimisation of the Cu-Ag-Pb system. Z Metalkunde. 1986; 77:749–54.Google Scholar
  43. 43.
    Luo A, Lloyd DJ, Gupta A, Youdelis WV. Precipitation and dissolution kinetics in Al–Li–Cu–Mg alloy 8090. Acta Metal Mater. 1993;41:769–76.CrossRefGoogle Scholar
  44. 44.
    Ghosh KS, Das K, Chatterjee UK. Kinetics of solid state reactions in Al–Li–Cu–Mg–Zr alloys from calorimetric studies. Metal Mater Trans A. 2007;38A:1965–75.CrossRefGoogle Scholar
  45. 45.
    Starink MJ. Analysis of aluminium based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics. Int Mater Rev. 2004;49:191–226.CrossRefGoogle Scholar
  46. 46.
    Zabdyr LA, Guminski C. The Hg–Sn (mercury–tin) system. J Phase Equilib. 1993;14:743–52.CrossRefGoogle Scholar
  47. 47.
    Yen YW, Groobner J, Steve CH, Schmid-Fetzer R. Thermodynamic assessment of the Hg–Sn system. J Phase Equilib. 2003;24:151–67.CrossRefGoogle Scholar
  48. 48.
    Johnson LB Jr. Confirmation of the presence of β (Ag–Hg) in dental amalgam. J Biomed Mater Res. 1967;1:415–25.CrossRefGoogle Scholar
  49. 49.
    Vrijhoef MMA, Driessens FCM. Long term phase changes in dental amalgam after setting. J Biomed Mater Res. 1974;8:435–42.CrossRefGoogle Scholar
  50. 50.
    Baren MR. The Ag–Hg (silver–mercury) system. J Phase Equilib. 1996;17:122–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology (NIT)DurgapurIndia

Personalised recommendations