Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 129, Issue 3, pp 1291–1299 | Cite as

Effects of some nucleating agents on the supercooling of erythritol to be applied as phase change material

  • Ju-Lan ZengEmail author
  • Lei Zhou
  • Yue-Fei Zhang
  • Sai-Ling Sun
  • Yu-Hang Chen
  • Li Shu
  • Lin-Ping Yu
  • Ling Zhu
  • Liu-Bin Song
  • Zhong Cao
Article

Abstract

Nine nucleating agents, calcium pimelate (CaPi), bicyclic [1, 2, 2]heptane di-carboxylate (HPN-68), a commercially obtained aryl amide nucleating agent (TMB-5), calcium salt of hexahydrophthalic acid (HPN-20E), 1,3:2,4-di-p-methylbenzylidene sorbitol (MDBS) and sodium, potassium, magnesium and calcium salt of benzene-1, 3, 5-tricarboxylic acid (Na3BTC, K3BTC, Mg3BTC2 and Ca3BTC2, respectively), were applied to reduce the supercooling of erythritol, and their effects were investigated by cyclic differential scanning calorimetry (DSC). The results revealed that Na3BTC and K3BTC could not induce erythritol to crystallize under the experiment condition. MDBS could only make erythritol to crystallize at a temperature slightly higher than that of pure erythritol, and the effect was unstable. Mg3BTC2, Ca3BTC2 and HPN-68 could induce erythritol to crystallize at relatively high temperature, but the peak temperature of crystallizing (T p, cr) and the phase change enthalpy of crystallizing (Δcr H) decreased greatly as the melting–crystallizing cycles increased. HPN-20E-doped erythritol crystallized at a high temperature with the T p, cr of 69.3 °C at the first cycle, but the T p, cr and Δcr H varied greatly during the melting–crystallizing cycles. CaPi and TMB-5 could induce erythritol to crystallize at a stable temperature with the T p, cr of about 69 °C and 64 °C, respectively, and with a stable Δcr H of about 204 and 185 J g−1, respectively, in all melting–crystallizing cycles. Hence, CaPi- and TMB-5-doped erythritol could be used as PCMs and applied in thermal energy storage in which the energy was absorbed at a high temperature and released at a lower but stable temperature.

Keywords

Phase change material Erythritol Supercooling Nucleating agents Thermal energy storage 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (21003014, 21376031, 21501015 and 21275022), the Natural Science Foundation of Hunan Province, China (2017JJ1026, 13JJ3068), Scientific Research Fund of Hunan Provincial Education Department (15B0002) and the Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation (Changsha University of Science and Technology) (2014CL05).

References

  1. 1.
    Barlev D, Vidu R, Stroeve P. Innovation in concentrated solar power. Sol Energy Mater Sol Cells. 2011;95(10):2703–25.CrossRefGoogle Scholar
  2. 2.
    Aman MM, Solangi KH, Hossain MS, Badarudin A, Jasmon GB, Mokhlis H, et al. A review of safety, health and environmental (SHE) issues of solar energy system. Renew Sustain Energy Rev. 2015;41:1190–204. doi: 10.1016/j.rser.2014.08.086.CrossRefGoogle Scholar
  3. 3.
    Su W, Darkwa J, Kokogiannakis G. Review of solid–liquid phase change materials and their encapsulation technologies. Renew Sustain Energy Rev. 2015;48:373–91. doi: 10.1016/j.rser.2015.04.044.CrossRefGoogle Scholar
  4. 4.
    Pintaldi S, Perfumo C, Sethuvenkatraman S, White S, Rosengarten G. A review of thermal energy storage technologies and control approaches for solar cooling. Renew Sustain Energy Rev. 2015;41:975–95. doi: 10.1016/j.rser.2014.08.062.CrossRefGoogle Scholar
  5. 5.
    Khadiran T, Hussein MZ, Zainal Z, Rusli R. Encapsulation techniques for organic phase change materials as thermal energy storage medium: a review. Sol Energy Mater Sol Cells. 2015;143:78–98. doi: 10.1016/j.solmat.2015.06.039.CrossRefGoogle Scholar
  6. 6.
    Z-j Duan, H-z Zhang, L-x Sun, Cao Z, Xu F, Y-j Zou, et al. CaCl2·6H2O/expanded graphite composite as form-stable phase change materials for thermal energy storage. J Therm Anal Calorim. 2014;115(1):111–7. doi: 10.1007/s10973-013-3311-0.CrossRefGoogle Scholar
  7. 7.
    Zhang HZ, Xu QY, Zhao ZM, Zhang J, Sun YJ, Sun LX, et al. Preparation and thermal performance of gypsum boards incorporated with microencapsulated phase change materials for thermal regulation. Sol Energy Mater Sol Cells. 2012;102:93–102. doi: 10.1016/j.solmat.2012.03.020.CrossRefGoogle Scholar
  8. 8.
    Zeng JL, Zheng SH, Yu SB, Zhu FR, Gan J, Zhu L, et al. Preparation and thermal properties of palmitic acid/polyaniline/exfoliated graphite nanoplatelets form-stable phase change materials. Appl Energy. 2014;115:603–9. doi: 10.1016/j.apenergy.2013.10.061.CrossRefGoogle Scholar
  9. 9.
    Zeng JL, Gan J, Zhu FR, Yu SB, Xiao ZL, Yan WP, et al. Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2014;127:122–8. doi: 10.1016/j.solmat.2014.04.015.CrossRefGoogle Scholar
  10. 10.
    Fernández AG, Galleguillos H, Fuentealba E, Pérez FJ. Thermal characterization of HITEC molten salt for energy storage in solar linear concentrated technology. J Therm Anal Calorim. 2015;122(1):3–9. doi: 10.1007/s10973-015-4715-9.CrossRefGoogle Scholar
  11. 11.
    Genc ZK, Canbay CA, Acar SS, Sekerci M, Genc M. Preparation and thermal properties of heterogeneous composite phase change materials based on camphene–palmitic acid. J Therm Anal Calorim. 2015;120(3):1679–88. doi: 10.1007/s10973-015-4478-3.CrossRefGoogle Scholar
  12. 12.
    Sádovská G, Honcová P, Pilař R, Oravová L, Honc D. Calorimetric study of calcium nitrate tetrahydrate and magnesium nitrate hexahydrate. J Therm Anal Calorim. 2016;124(1):539–46. doi: 10.1007/s10973-015-5159-y.CrossRefGoogle Scholar
  13. 13.
    Hidaka H, Yamazaki M, Yabe M, Kakiuchi H, Ona EP, Kojima Y, et al. New PCMs prepared from erythritol–polyalcohols mixtures for latent heat storage between 80 and 100 °C. J Chem Eng Jpn. 2004;37(9):1155–62. doi: 10.1252/jcej.37.1155.CrossRefGoogle Scholar
  14. 14.
    Adachi T, Daudah D, Tanaka G. Effects of supercooling degree and specimen size on supercooling duration of erythritol. ISIJ Int. 2014;54(12):2790–5. doi: 10.2355/isijinternational.54.2790.CrossRefGoogle Scholar
  15. 15.
    Ona EP, Zhang X, Kyaw K, Watanabe F, Matsuda H, Kakiuchi H, et al. Relaxation of supercooling of erythritol for latent heat storage. J Chem Eng Jpn. 2001;34(3):376–82. doi: 10.1252/jcej.34.376.CrossRefGoogle Scholar
  16. 16.
    Okawa S, Saito A, Minami R. The solidification phenomenon of the supercooled water containing solid particles. Int J Refrig. 2001;24(1):108–17. doi: 10.1016/S0140-7007(00)00060-8.CrossRefGoogle Scholar
  17. 17.
    Ona EP, Zhang X, Ozawa S, Matsuda H, Kakiuchi H, Yabe M, et al. Influence of ultrasonic irradiation on the solidification behavior of erythritol as a PCM. J Chem Eng Jpn. 2002;35(3):290–8. doi: 10.1252/jcej.35.290.CrossRefGoogle Scholar
  18. 18.
    Wei L, Ohsasa K. Supercooling and solidification behavior of phase change material. ISIJ Int. 2010;50(9):1265–9. doi: 10.2355/isijinternational.50.1265.CrossRefGoogle Scholar
  19. 19.
    Kholmanov I, Kim J, Ou E, Ruoff RS, Shi L. Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano. 2015;9(12):11699–707. doi: 10.1021/acsnano.5b02917.CrossRefGoogle Scholar
  20. 20.
    Ushak S, Gutierrez A, Barreneche C, Fernandez AI, Grágeda M, Cabeza LF. Reduction of the subcooling of bischofite with the use of nucleatings agents. Solar Energy Mater Sol Cells. 2016;157:1011–8. doi: 10.1016/j.solmat.2016.08.015.CrossRefGoogle Scholar
  21. 21.
    Cui W, Yuan Y, Sun L, Cao X, Yang X. Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials. Renew Energy. 2016;99:1029–37. doi: 10.1016/j.renene.2016.08.001.CrossRefGoogle Scholar
  22. 22.
    Safari A, Saidur R, Sulaiman FA, Xu Y, Dong J. A review on supercooling of phase change materials in thermal energy storage systems. Renew Sustain Energy Rev. 2017;70:905–19. doi: 10.1016/j.rser.2016.11.272.CrossRefGoogle Scholar
  23. 23.
    Al-Shannaq R, Kurdi J, Al-Muhtaseb S, Dickinson M, Farid M. Supercooling elimination of phase change materials (PCMs) microcapsules. Energy. 2015;87:654–62. doi: 10.1016/j.energy.2015.05.033.CrossRefGoogle Scholar
  24. 24.
    Li JX, Cheung WL. Pimelic acid-based nucleating agents for hexagonal crystalline polypropylene. J Vinyl Addit Technol. 1997;3(2):151–6. doi: 10.1002/vnl.10182.CrossRefGoogle Scholar
  25. 25.
    Zhang YF, Chang Y, Li X, Xie D. Nucleation effects of a novel nucleating agent bicyclic [1, 2, 2] heptane di-carboxylate in isotactic polypropylene. J Macromol Sci B. 2010;50(2):266–74. doi: 10.1080/00222341003648995.CrossRefGoogle Scholar
  26. 26.
    Liu H, Huo H. Crystal phases, structure, and orientation in isotactic polypropylene after isothermal crystallization under oscillatory shear as a function of nucleation agent. Colloid Polym Sci. 2014;292(4):849–61. doi: 10.1007/s00396-013-3133-4.CrossRefGoogle Scholar
  27. 27.
    Zhang YF, Guo LH, Chen H, Liu BB, Gu YH. Properties and crystallization behaviors of isotactic polypropylene under action of an effective nucleating agent. J Macromol Sci B. 2015;54(9):1019–28. doi: 10.1080/00222348.2015.1060404.CrossRefGoogle Scholar
  28. 28.
    Zhang YF. Comparison of nucleation effects of organic phosphorous and sorbitol derivative nucleating agents in isotactic polypropylene. J Macromol Sci B. 2008;47(6):1188–96. doi: 10.1080/00222340802403412.CrossRefGoogle Scholar
  29. 29.
    Zhang YF, Luo XZ. Effects of benzene-1, 3, 5-tricarboxylate salts on crystallization and melting behaviors of isotactic polypropylene. In: Prushotaman E, editor. 2013 international conference on biological, medical and chemical engineering. Hong Kong; 2013.Google Scholar
  30. 30.
    Ceccarelli C, Jeffrey GA, McMullan RK. A neutron diffraction refinement of the crystal structure of erythritol at 22.6 K. Acta Crystallogr B. 1980;36(12):3079–307983. doi: 10.1107/S0567740880010825.CrossRefGoogle Scholar
  31. 31.
    Lopes Jesus AJ, Nunes SCC, Ramos Silva M, Matos Beja A, Redinha JS. Erythritol: crystal growth from the melt. Int J Pharm. 2010;388(1–2):129–35. doi: 10.1016/j.ijpharm.2009.12.043.CrossRefGoogle Scholar
  32. 32.
    Domalski ES, Hearing ED. Heat capacities and entropies of organic compounds in the condensed phase. Volume III. J Phys Chem Ref Data. 1996;25(1):1–525. doi: 10.1063/1.555985.CrossRefGoogle Scholar
  33. 33.
    Zalba B, Marin JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23(3):251–83.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Ju-Lan Zeng
    • 1
    Email author
  • Lei Zhou
    • 1
  • Yue-Fei Zhang
    • 1
  • Sai-Ling Sun
    • 1
  • Yu-Hang Chen
    • 1
  • Li Shu
    • 1
  • Lin-Ping Yu
    • 1
  • Ling Zhu
    • 1
  • Liu-Bin Song
    • 1
  • Zhong Cao
    • 1
  1. 1.Collaborative Innovation Center of Micro/Nano Bio-sensing and Food Safety Inspection, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological EngineeringChangsha University of Science and TechnologyChangshaPeople’s Republic of China

Personalised recommendations