Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 129, Issue 2, pp 1029–1037 | Cite as

Thermal degradation and flammability of polyamide 11 filled with nanoboehmite

  • Laurent Ferry
  • Rodolphe Sonnier
  • José-Marie Lopez-Cuesta
  • Sylvain Petigny
  • Christophe Bert
Article

Abstract

The flame-retardant effect of rod-like nanoboehmite was evaluated in biobased polyamide 11. Thermal analysis reveals that hydrated nanofillers modify the degradation pathway of polyamide 11 turning from a two-step to a single-step mechanism. The polymer thermal stability is increased due to interactions between polar groups and filler surface hydroxyl groups. Despite this improved thermal stability, polyamide 11/nanoboehmite composites exhibit shorter times to ignition in cone calorimeter. The phenomenon was attributed to changes in thermoradiative properties leading to a faster heating of the polymer surface. The most significant flame-retardant action is a reduction in heat release rate that was related to a barrier effect while endothermic water release seems to play a minor role.

Keywords

Polyamide 11 Nanoboehmite Thermal degradation Flammability Flame retardant 

References

  1. 1.
    Mailhos-Lefievre V, Sallet D, Martel B. Thermal degradation of pure and flame-retarded polyamides 11 and 12. Polym Degrad Stab. 1989;23:327–36.CrossRefGoogle Scholar
  2. 2.
    Levchik SV, Costa L, Camino G. Effect of the fire-retardant, ammonium polyphosphate on the thermal decomposition of aliphatic polyamides. I. Polyamides 11 and 12. Polym Degrad Stab. 1992;36:31–41.CrossRefGoogle Scholar
  3. 3.
    Lao SC, Wu C, Moon TJ, Koo JH, Morgan A, Pilato L, Wissler G. Flame-retardant polyamide 11 and 12 nanocomposites: processing, morphology and mechanical properties. J Compos Mater. 2009;43:1803–18.CrossRefGoogle Scholar
  4. 4.
    Lao SC, Koo JH, Moon TJ, Londa M, Ibeh CC, Wissler GE, Pilato LA. Flame-retardant polyamide 11 nanocomposites: further thermal flammability studies. J Fire Sci. 2011;29:479–98.CrossRefGoogle Scholar
  5. 5.
    Liu Y, Feng ZQ, Wang Q. The investigation of intumescent flame-retardant polypropylene using a new macromolecular charring agent polyamide 11. Polym Compos. 2009;30:221–5.CrossRefGoogle Scholar
  6. 6.
    Levchik SV, Weil ED, Lewin M. Thermal decomposition of aliphatic nylons. Polym Int. 1999;48:532–57.CrossRefGoogle Scholar
  7. 7.
    Hornsby PR. Fire-retardant fillers. In: Wilkie CA, Morgan AB, editors. Fire retardancy of polymeric materials. New-York: CRC Press; 2010. p. 163–85.Google Scholar
  8. 8.
    Hornsby PR, Wang J, Rothon R, Jackson G, Wilkinson G, Cossick K. Thermal decomposition behaviour of polyamide fire-retardant compositions containing magnesium hydroxide filler. Polym Degrad Stab. 1996;51:235–49.CrossRefGoogle Scholar
  9. 9.
    Fei G, Liu Y, Wang Q. Synergistic effects of novolac-based char former with magnesium hydroxide in flame retardant polyamide-6. Polym Degrad Stab. 2008;93:1351–6.CrossRefGoogle Scholar
  10. 10.
    Camino G, Maffezzoli A, Braglia M, De Lazzaro M, Zammarano M. Effect of hydroxides and hydroxycarbonate structure on fire retardant effectiveness and mechanical properties in ethylene-vinyl acetate copolymer. Polym Degrad Stab. 2001;74:457–64.CrossRefGoogle Scholar
  11. 11.
    Müller P, Schartel B. Melamine poly(metal phosphates) as flame retardant in epoxy resin: performance, modes of action, and synergy. J Appl Polym Sci. 2016;133:43549–62.CrossRefGoogle Scholar
  12. 12.
    Sut A, Greiser S, Jäger C, Schartel B. Synergy in flame-retarded epoxy resin: identification of chemical interactions by solid-state NMR. J Therm Anal Calorim. 2016. doi: 10.1007/s10973-016-5934-4.Google Scholar
  13. 13.
    Bravet D, Guiselin O, Swei G. Effect of surface treatment on the properties of polypropylene/nanoboehmite composites. J Appl Polym Sci. 2010;116:373–81.Google Scholar
  14. 14.
    Elbasuney S. Continuous hydrothermal synthesis of AlO(OH) nanorods as a clean flame retardant agent. Particuology. 2015;22:66–71.CrossRefGoogle Scholar
  15. 15.
    Xu X, Liu Y, Li Z, Lv Z, Song J, He M, Wang Q, Yan L, Li Z. Thermal study of boehmite nanofibers with controlled particle size. J Therm Anal Calorim. 2014;115:1111–7.CrossRefGoogle Scholar
  16. 16.
    Pawloski KH, Schartel B. Flame retardancy mechanisms of aryl phosphates in combination with boehmite in bisphenol A polycarbonate/acrylonitrileebutadieneestyrene blends. Polym Degrad Stab. 2008;93:657–67.CrossRefGoogle Scholar
  17. 17.
    Friederich B, Laachachi A, Sonnier R, Ferriol M, Cochez M, Toniazzo V, Ruch D. Comparison of alumina and boehmite in (APP/MPP/metal oxide) ternary systems on the thermal and fire behavior of PMMA. Polym Adv Technol. 2011;23:1369–80.CrossRefGoogle Scholar
  18. 18.
    Hamdani-Devarennes S, El Hage R, Dumazert L, Sonnier R, Ferry L, Lopez-Cuesta JM, Bert C. Water-based flame retardant coating using nano-boehmite for expanded polystyrene (EPS) foam. Prog Org Coat. 2016;99:32–46.CrossRefGoogle Scholar
  19. 19.
    Laachachi A, Ferriol M, Cochez M, Lopez Cuesta JM, Ruch D. A comparison of the role of boehmite (AlOOH) and alumina (Al2O3) in the thermal stability and flammability of poly(methyl methacrylate). Polym Degrad Stab. 2009;94:1373–8.CrossRefGoogle Scholar
  20. 20.
    Zhang J, Ji Q, Zhang P, Xia Y, Kong Q. Thermal stability and flame-retardancy mechanism of poly(ethylene terephthalate)/boehmite nanocomposites. Polym Degrad Stab. 2010;95:1211–8.CrossRefGoogle Scholar
  21. 21.
    Monti M, Camino G. thermal and combustion behavior of polyethersulfone-boehmite nanocomposites. Polym Degrad Stab. 2013;98:1838–46.CrossRefGoogle Scholar
  22. 22.
    Sun T, Zhuo Q, Chen Y, Wu Z. Synthesis of boehmite and its effect on flame retardancy of epoxy resin. High Perform Polym. 2015;27:100–4.CrossRefGoogle Scholar
  23. 23.
    Herrera M, Matuschek G, Kettrup A. Main products and kinetics of the thermal degradation of polyamides. Chemosphere. 2001;42:601–7.CrossRefGoogle Scholar
  24. 24.
    Budrugeac P, Segal E. Applicability of the Kissinger equation in thermal analysis. J Therm Anal Calorim. 2007;88:703–7.CrossRefGoogle Scholar
  25. 25.
    Sonnier R, Ferry L, Longuet C, Laoutid F, Friederich B, Laachachi A, Lopez-Cuesta JM. Combining cone calorimeter and PCFC to determine the mode of action of flame-retardant additives. Polym Adv Technol. 2011;22:1091–9.CrossRefGoogle Scholar
  26. 26.
    Oliveira MJ, Botelho G. Degradation of polyamide 11 in rotational moulding. Polym Degrad Stab. 2008;93:139–46.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Centre des Matériaux des Mines d’Alès C2MAEcole des Mines d’AlèsAlès CedexFrance
  2. 2.Saint-Gobain, CREECavaillon CedexFrance

Personalised recommendations