Journal of Thermal Analysis and Calorimetry

, Volume 129, Issue 2, pp 1111–1120 | Cite as

Thermal study of residues from greenhouse crops plant biomass

  • Laura Morales
  • Eduardo Garzón
  • José María Martínez-Blanes
  • Pedro José Sánchez-Soto


The principal aim of this work is to examine the effect of thermal treatments using a muffle furnace (static heating) and by simultaneous TG/DTA (dynamic heating) on selected greenhouse crops plant biomass investigated here as the first time. The effect of fractionation by sieving (<25 and <2.5 mm), preheating at 150 °C for 48 h and leaching with water on the thermal behavior has been studied. The observation of similar profiles of mass variation corresponding to several samples heated in air up to 1150 °C allows to conclude that particle size did not influence the thermal evolution, but the effect of heating cycle is evidenced. Thermal analysis in air of a representative sample showed the several mass variation steps and DTA exothermic effects produced by the complex thermal decomposition and pyrolysis of the organic matter. Elemental analysis (CHNS and O) of the starting samples and thermally treated revealed the effect of the temperature, with formation of ashes with lower C content from 44.37 to 0.70 mass% as a minimum after elimination of organic matter by heating. Leaching increased the thermal mass variation as an effect of elimination of water-soluble components. According to the present results, the size fractionation of the greenhouse crops biomass did not influence the results of elemental composition. The present study has provided results of interest concerning this biomass source of renewable energy originated by the remains of tomato (Solanum lycopersicum L.), being estimated the highest of all the biomass produced by the greenhouse crops agricultural industry in Almería (SE Spain).


Greenhouse crops Biomass Thermal analysis Ashes Leaching Energy production 



The financial support of Andalusia Regional Government (2014–2015) to this investigation through Research Groups AGR 107 and TEP 204 is acknowledged. The company “Transportes y Contenedores Antonio Morales” is also acknowledged, which has facilitated the collection of samples in its Treatment Plant of greenhouse crops residues.


  1. 1.
    Demirbaş A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust. 2005;31:171–92.CrossRefGoogle Scholar
  2. 2.
    Siadur R, Abdelaziz EA, Demirbaş A, Hossain MS, Mekhilef S. A review on biomass as a fuel for boilers. Renew Sust Energy Rev. 2011;15:2262–89.CrossRefGoogle Scholar
  3. 3.
    Vargas-Moreno JM, Callejon-Ferre AJ, Pérez-Alonso J, Velázquez-Martí B. A review of the mathematical model for predicting the heating value of biomass materials. Renew Sust Energy Rev. 2012;16:3065–83.CrossRefGoogle Scholar
  4. 4.
    Vassilev S, Baxter D, Andersen L, Vassileva C. An overview of the chemical composition of biomass. Fuel. 2010;89:913–33.CrossRefGoogle Scholar
  5. 5.
    Vassilev S, Baxter D, Andersen L, Vassileva C. An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel. 2013;105:40–76.CrossRefGoogle Scholar
  6. 6.
    Vassilev S, Baxter D, Andersen L, Vassileva C. An overview of the composition and application of biomass ash. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel. 2013;105:19–39.CrossRefGoogle Scholar
  7. 7.
    Demirbaş A. Combustion characteristics of different biomass fuels. Prog Energy Combust. 2004;30:219–30.CrossRefGoogle Scholar
  8. 8.
    Cioablă AE, Pop N, Trif-Tordai G, Calinoiu DG. Comparative study of agricultural materials influenced by anaerobic fermentation for biogas production in terms of ash melting behavior. J Therm Anal Calorim. 2016;. doi: 10.1007/s10973-016-5637-x.Google Scholar
  9. 9.
    Carrasco B, Cruz N, Terrados J, Corpas FA, Pérez L. An evaluation of bottom ash from plant biomass as a replacement for cement in building blocks. Fuel. 2014;118:272–80.CrossRefGoogle Scholar
  10. 10.
    Pardosi A, Tognoni F, Incrocci L. Mediterranean greenhouse technology. Chron Hortic. 2004;44:28–34.Google Scholar
  11. 11.
    Espi E, Salmeron A, Fontecha A, García-Alonso Y, Real AI. Plastic films for agricultural applications. J. Plastic Film Sheet. 2006;22:85–102.CrossRefGoogle Scholar
  12. 12.
    Callejón-Ferré AJ, Velázquez-Martí B, López-Martínez JA, Manzano-Agugliaro F. Greenhouse crop residues: energy potential and models for the prediction of their higher heating value. Renew Sust Energy Rev. 2011;15:948–55.CrossRefGoogle Scholar
  13. 13.
    Callejón-Ferré AJ, Manzano-Agugliaro F, Díaz-Pérez M, Carreño-Ortega A, Pérez-Alonso J. Effect of shading with aluminised screens on fruit production and quality in tomato (Solanum lycopersicum L.) under greenhouse conditions. Span J Agric Res. 2009;7:41–9.CrossRefGoogle Scholar
  14. 14.
    Callejón-Ferré AJ, López-Martínez JA. Briquettes of plant remains from the greenhouses of Almería (Spain). Span J Agric Res. 2009;7:525–34.CrossRefGoogle Scholar
  15. 15.
    Callejón-Ferré AJ, Carreño-Ortega A, Sánchez-Hermosilla J, Pérez-Alonso J. Environmental impact on agricultural solid waste disposal and transformation plant in the province of Almería (Spain). Inf Constr. 2010;62:79–93.CrossRefGoogle Scholar
  16. 16.
    Callejón-Ferré AJ, Carreño-Sánchez J, Suárez-Medina FJ, Pérez-Alonso J, Velázquez-Martí B. Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almería (Spain). Fuel. 2014;116:377–87.CrossRefGoogle Scholar
  17. 17.
  18. 18.
    López JC, Pérez C, Fernández MD, Meca D, Gázquez JC, Acien FG. Caracterización de los residuos vegetales de invernadero en Almería, VII Congreso Ibérico de Agroingeniería y Ciencias Hortícolas pp. 2029–2034, 23–26 August; Madrid 2013.Google Scholar
  19. 19.
    Arvelakis S, Sotiriou C, Moutsatsou A, Koukios EG. Prediction of the behaviour of biomass ash in fluidized bed combustors and gasifiers. J Therm Anal Calorim. 1999;56:1271–8.CrossRefGoogle Scholar
  20. 20.
    Suárez-García F, Martínez-Alonso A, Fernández-Llorente M, Tascón JMD. Inorganic matter characterization in vegetable biomass feedstocks. Fuel. 2002;81:1161–9.CrossRefGoogle Scholar
  21. 21.
    Arvelakis S, Gehrmann H, Beckmann M, Kaukias EG. Studying the ash behaviour of agricultural residues using thermal analysis. J Therm Anal Calorim. 2003;72:1019–30.CrossRefGoogle Scholar
  22. 22.
    Strezov V, Moghtaderi B, Lucas JA. Thermal study of decomposition of selected biomass samples. J Thermal Anal Calorim. 2003;72:1041–8.CrossRefGoogle Scholar
  23. 23.
    Magdziarz A, Wilk M. Thermal characteristics of the combustion process of biomass and sewage sludge. J Therm Anal Calorim. 2013;114:519–29.CrossRefGoogle Scholar
  24. 24.
    Nogales R, Delgado G, Quirantes M, Romero M, Romero E, Molina-Alcaide E. Characterization of olive waste ashes as fertilizers. In: Insam H, Knapp BA, editors. Recycling of biomass ashes, vol. 5. Berlin: Springer; 2011. p. 57–68.CrossRefGoogle Scholar
  25. 25.
    Fernández-Pereira C, de la Casa JA, Gómez-Barea A, Arroyo F, Leiva C, Luna Y. Application of biomass gasification fly ash for brick manufacturing. Fuel. 2011;90:220–32.CrossRefGoogle Scholar
  26. 26.
    Marcelis LFM, Heuvenlik E, De Koning ANM. Dynamic simulation of dry matter distribution in greenhouse crops. Acta Hortic. 1989;248:269–76.CrossRefGoogle Scholar
  27. 27.
    Marcelis LFM. Simulation of biomass allocation in greenhouse crops-A review. Acta Hortic. 1993;328:49–67.CrossRefGoogle Scholar
  28. 28.
    Febrero L, Granada E, Pérez C. Characterisation and comparison of biomass ashes with different thermal histories using TG-DSC. J Therm Anal Calorim. 2014;118:669–80.CrossRefGoogle Scholar
  29. 29.
    Cioablă AE, Pop N, Calinoiu DG. An experiment approach to the chemical properties and the ash melting behavior in agricultural biomass. J Therm Anal Calorim. 2015;121:421–7.CrossRefGoogle Scholar
  30. 30.
    Magdziarz A, Dalai AK, Koziński JA. Chemical composition, character and reactivity of renewable fuel ashes. Fuel. 2016;176:135–45.CrossRefGoogle Scholar
  31. 31.
    Magdziarz A, Wilk M, Gajek M, Nowak-Woźny D, Kopia A, Kalemba-Rec I, Koziński JA. Properties of ash generated during sewage sludge combustion: a multifaceted analysis. Energy. 2016;113:85–94.CrossRefGoogle Scholar
  32. 32.
    Carrillo MA, Staggenberg SA, Pineda JA. Washing sorghum biomass with water to improve its quality for combustion. Fuel. 2014;116:427–31.CrossRefGoogle Scholar
  33. 33.
    Telmo C, Lousada J, Moreira N. Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresour Technol. 2010;101:3808–15.CrossRefGoogle Scholar
  34. 34.
    Gazulla MF, Rodrigo M, Orduña M, Gómez CM. Determination of carbon, hydrogen, nitrogen and sulfur in geological materials using elemental analyzers. Geostand Geoanal Res. 2012;36:201–17.CrossRefGoogle Scholar
  35. 35.
    Scholleberger CJ. Determination of soil organic matter. Soil Sci. 1945;59:53–6.CrossRefGoogle Scholar
  36. 36.
    Kerven GL, Menzies NW, Geyer MD. Soil carbon determination by high-temperature combustion-a comparison with dichromate oxidation procedures and the influence of charcoal and carbonate carbon on the measured value. Commun Soil Sci Plant Anal. 2000;31:1935–9.CrossRefGoogle Scholar
  37. 37.
    Saidur R, Abdelaziz EA, Demirbaş A, Hossain MS, Mekhilef S. A review on biomass as a fuel for boilers. Renew Sustain Energy Rev. 2011;15:2262–89.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Laura Morales
    • 1
  • Eduardo Garzón
    • 1
  • José María Martínez-Blanes
    • 2
  • Pedro José Sánchez-Soto
    • 2
  1. 1.Departamento de IngenieríaUniversidad de AlmeríaLa Cañada de San UrbanoSpain
  2. 2.Instituto de Ciencia de Materiales, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)Universidad de SevillaEdificio cicCartujaSpain

Personalised recommendations