Journal of Thermal Analysis and Calorimetry

, Volume 129, Issue 2, pp 869–884 | Cite as

Thermal behavior of novel catanionic cholates

XRPD technique in solving problems
  • Tea MiheljEmail author
  • Vlasta Tomašić
  • Jasminka Popović
  • Željko Skoko


In this article, we bring new insight into room temperature structure of catanionic cholates and complement their thermal behavior given by the conventional thermal techniques with the XRPD technique. The comparative study of the addition of each dodecyl chain and ammonium group is made bearing in mind the complete architecture of synthesized cholates. The examined samples are crystal smectic phases at room temperature, with proposed sandwich-type structure, promoted by cholates architecture. For most of the studied compounds, thermal behavior is characterized as formation of structural varieties and/or polymorphs as low-temperature phases and formation of high-temperature mesomorphic, lamellae-like phases. The exception is dimeric dicholate, which only forms SmA phase before its decomposition. The dependence of the isotropization temperatures, enthalpy and entropy changes, on the increasing ammonium headgroup number, points to the fact that thermal stability of these catanionics depends on the structure of cationic component that is its constituent, where cholate anion shows minor effect. The chemistry of amphiphiles, their supramolecular behavior and thermotropic affinity is at the frontier of the contemporary research and design of the new functional materials, because this is simple but effective way to control the nature and location of reactions. From that point of view, the systematic analysis of physico-chemical properties of various catanionic amphiphiles brings new findings of their chemical structure–properties relationship, therefore enabling simpler and reliable way of new materials synthesis with desired properties.


Sodium cholate Atypical bilayer X-ray powder diffraction Thermal behavior Thermotropic 



This work has received support from the Science Foundation of the Republic of Croatia (Project HRZZ-5055). We are grateful to dr. sc. Darija Jurašin, Ruđer Bošković Institute, Zagreb, for gifting the dimeric and oligomeric quaternary ammonium bromides.

Supplementary material

10973_2017_6193_MOESM1_ESM.pdf (598 kb)
Supplementary material 1 (PDF 598 kb)


  1. 1.
    Tanaka Y, Miyachi M, Kobuke Y. Selective vesicle formation from calixarenes by self-assembly. Angew Chem Int Ed. 1999;38:504–6.CrossRefGoogle Scholar
  2. 2.
    Donohue R, Mazzaglia A, Ravoo BJ, Darcy R. Cationic β-cyclodextrin bilayer vesicles. Chem Commun. 2002;2864–5.Google Scholar
  3. 3.
    Sukegawa T, Furuike T, Niikura K, Yamagishi A, Monde K, Nishimura S-I. Erythrocyte-like liposomes prepared by means of amphiphilic cyclodextrin sulfates. Chem Commun. 2002;5:430–1.CrossRefGoogle Scholar
  4. 4.
    Nolan D, Darcy R, Ravoo BJ. Preparation of vesicles and nanoparticles of amphiphilic cyclodextrins containing labile disulfide bonds. Langmuir. 2003;19:4469–72.CrossRefGoogle Scholar
  5. 5.
    Parikh VB, Menon SK. Synthesis and mesomorphic properties of novel crown ether schiff bases. Mol Cryst Liq Cryst. 2008;482:71–83.CrossRefGoogle Scholar
  6. 6.
    Tuffin RP, Toyne KJ, Goodby JW. Phasmidic phases in macrocyclic liquid crystals. J Mater Chem. 1996;6:1271–82.CrossRefGoogle Scholar
  7. 7.
    Kaller M, Staffeld P, Haug R, Frey W, Giesselmann F, Laschat S. Substituted crown ethers as central units in discotic liquid crystals: effects of crown size and cation uptake. Liq Cryst. 2011;38:531–53.CrossRefGoogle Scholar
  8. 8.
    Steinke N, Frey W, Baro A, Laschat S, Drees C, Nimtz M, et al. Columnar and smectic liquid crystals based on crown ethers. Chem. A. 2006;12:1026–35.Google Scholar
  9. 9.
    Mihelj T, Tomašić V, Biliškov N. 18-Crown-6–sodium cholate complex: thermochemistry, structure, and stability. Langmuir. 2014;30:6274–85.CrossRefGoogle Scholar
  10. 10.
    Mihelj T, Tomašić V, Biliškov N, Liu F. Temperature-dependent IR spectroscopic and structural study of 18-crown-6 chelating ligand in the complexation with sodium surfactant salts and potassium picrate. Spectrochim Acta A Mol Biomol Spectrosc. 2014;124:12–20.CrossRefGoogle Scholar
  11. 11.
    Elemans JAAW, Rowan AE, Nolte RJM. Hierarchical self-assembly of amphiphilic metallohosts to give discrete nanostructures. J Am Chem Soc. 2002;124:1532–40.CrossRefGoogle Scholar
  12. 12.
    Song A, Jia X, Teng M, Hao J. Ca2+- and ba2+-ligand coordinated unilamellar, multilamellar, and oligovesicular vesicles. Chem Weinh Bergstr Ger. 2007;13:496–501.Google Scholar
  13. 13.
    Hao J, Wang J, Liu W, Abdel-Rahem R, Hoffmann H. Zn2+-induced vesicle formation. J Phys Chem B. 2004;108:1168–72.CrossRefGoogle Scholar
  14. 14.
    Noponen V, Lahtinen M, Valkonen A, Salo H, Kolehmainen E, et al. Bile acid–amino acid ester conjugates: gelation, structural properties, and thermoreversible solid to solid phase transition. Soft Matter. 2010;6:3789–96.CrossRefGoogle Scholar
  15. 15.
    Noponen V, Belt H, Lahtinen M, Valkonen A, Salo H, Ulrichová J, et al. Bile acid–cysteamine conjugates: structural properties, gelation, and toxicity evaluation. Steroids. 2012;77:193–203.CrossRefGoogle Scholar
  16. 16.
    Mihelj T, Tomašić V. Amphiphilic properties of dodecylammonium chloride/4-(1-Pentylheptyl) benzene sodium sulfonate aqueous mixtures and study of the catanionic complex. J Surfactants Deterg. 2014;17:309–21.CrossRefGoogle Scholar
  17. 17.
    Mihelj T, Štefanić Z, Tomašić V. Thermal and structural properties of surfactant–picrate compounds. J Therm Anal Calorim. 2012;108:1261–72.CrossRefGoogle Scholar
  18. 18.
    Silva BFB, Marques EF. Thermotropic behavior of asymmetric chain length catanionic surfactants: the influence of the polar head group. J Colloid Interface Sci. 2005;290:267–74.CrossRefGoogle Scholar
  19. 19.
    Tomašić V, Popović S, Tušek-Božić L, Pucić I, Filipović-Vinceković N. A novel catanionic surfactant: hexadecyltrimethylammonium dodecyl sulfate. Berichte Bunsenges Für Phys Chem. 1997;101:1942–8.CrossRefGoogle Scholar
  20. 20.
    Ungar G, Tomasić V, Xie F, Zeng X. Structure of liquid crystalline aerosol-OT and its alkylammonium salts. Langmuir. 2009;25:11067–72.CrossRefGoogle Scholar
  21. 21.
    Mihelj T, Tomašić V. Thermal behavior of dodecylpyridinium based surfactant salts with varied anionic constituent. J Dispers Sci Technol. 2014;35:581–92.CrossRefGoogle Scholar
  22. 22.
    Stella I, Müller A. Mesomorphic behaviour of N-(n-alkyl) pyridinium hydrogensulfates. Colloids Surf Physicochem Eng Asp. 1999;147:371–4.CrossRefGoogle Scholar
  23. 23.
    Hofmann AF. Bile acids: the good, the bad, and the ugly. Physiology. 1999;14:24–9.Google Scholar
  24. 24.
    Berlati F, Ceschel, G, Clerici, C, Pellicciari R, Roda A, Ronchi C. The use of bile acids as antiviral agents. 1994;WO1994000126 A1.Google Scholar
  25. 25.
    Marples B, Stretton R. Use of steroidal compounds as anti-fungal agents. 1990;WO/1990/013298.Google Scholar
  26. 26.
    Davis AP, Joos J-B. Steroids as organising elements in anion receptors. Coord Chem Rev. 2003;240:143–56.CrossRefGoogle Scholar
  27. 27.
    Nath S, Maitra U. A simple and general strategy for the design of fluorescent cation sensor beads. Org Lett. 2006;8:3239–42.CrossRefGoogle Scholar
  28. 28.
    Nakano K, Mochizuki E, Yasui N, Morioka K, Yamauchi Y, Kanehisa N, et al. Mechanism of selective and unselective enclathration by a host compound possessing open, flexible host frameworks. Eur J Org Chem. 2003;2003:2428–36.CrossRefGoogle Scholar
  29. 29.
    Nakano K, Sada K, Kurozumi Y, Miyata M. Importance of Packing coefficients of host cavities in the isomerization of open host frameworks: guest-size-dependent isomerization in cholic acid inclusion crystals with monosubstituted benzenes. Chem Eur J. 2001;7:209–20.CrossRefGoogle Scholar
  30. 30.
    Miyata M, Tohnai N, Hisaki I. Supramolecular chirality in crystalline assemblies of bile acids and their derivatives; three-axial, tilt, helical, and bundle chirality. Molecules. 2007;12:1973–2000.CrossRefGoogle Scholar
  31. 31.
    Miki K, Kasai N, Shibakami M, Chirachanchai S, Takemoto K, Miyata M. Crystal structure of cholic acid with no guest molecules. Acta Crystallogr C. 1990;46:2442–5.CrossRefGoogle Scholar
  32. 32.
    Cobbledick RE. FWBE. the structure of sodium 3α,7α,12α-trihydroxy-5β-cholan-24-oate monohydrate (sodium cholate monohydrate). Acta Crystallogr B. 1980;36:287–92.CrossRefGoogle Scholar
  33. 33.
    Miyata M, Sada K. Deoxycholic acid and related hosts. In: Davies J, McNicol D, Lehn J, Toda F, Bishop R, Atwood JL, editors. Comprehensive supramolecular chemistry. Oxford: Pergamon; 1966. p. 147–76.Google Scholar
  34. 34.
    Valkonen A, Lahtinen M, Tamminen J, Kolehmainen E. Solid state structural studies of five bile acid derivatives. J Mol Struct. 2008;886:197–206.CrossRefGoogle Scholar
  35. 35.
    Tomašić V, Štefanić Z. Cholic acid as host for long linear molecules: a series of co-crystals with n-alkylammonia. Cryst Eng Comm. 2007;9:1124–8.CrossRefGoogle Scholar
  36. 36.
    Kato K, Tohnai N, Miyata M. Hierarchical prediction process of cholic acid crystal structures based on characteristic helical assemblies. Mol Cryst Liq Cryst. 2005;440:125–32.CrossRefGoogle Scholar
  37. 37.
    López-Quintela MA, Akahane A, Rodrıguez C, Kunieda H. Thermotropic behavior of poly(oxyethylene) cholesterol ethers. J Colloid Interface Sci. 2002;247:186–92.CrossRefGoogle Scholar
  38. 38.
    Filipovic-Vincekovic N, Tomasic V. Solid-state transitions of surfactant crystals. In: Garti N, editor. Thermal behavior of dispersed systems. Boca Raton: CRC Press; 2000. p. 451–76.Google Scholar
  39. 39.
    Mihelj T, Vojta D, Tomašić V. The diversity in thermal behavior of novel catanionic cholates: the dominant effect of quaternary ammonium centers. Thermochim Acta. 2014;584:17–30.CrossRefGoogle Scholar
  40. 40.
    Jurašin D, Pustak A, Habuš I, Šmit I, Filipović-Vinceković N. Polymorphism and mesomorphism of oligomeric surfactants: effect of the degree of oligomerization. Langmuir. 2011;27:14118–30.CrossRefGoogle Scholar
  41. 41.
    Altomare A, Campi G, Cuocci C, Eriksson L, Giacovazzo C, Moliterni A, et al. Advances in powder diffraction pattern indexing: N-TREOR09. J Appl Crystallogr. 2009;42:768–75.CrossRefGoogle Scholar
  42. 42.
    Altomare A, Cuocci C, Giacovazzo C, Moliterni A, Rizzi R. EXPO2011: a new package for powder crystallography. Powder Diffr. 2011;26:S2–12.CrossRefGoogle Scholar
  43. 43.
    Monte MJ, Marin JJ, Antelo A, Vazquez-Tato J. Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol. 2009;15:804–16.CrossRefGoogle Scholar
  44. 44.
    Alvarez M, Jover A, Carrazana J, Meijide F, Soto VH, Tato JV. Crystal structure of chenodeoxycholic acid, ursodeoxycholic acid and their two 3β,7α- and 3β,7β-dihydroxy epimers. Steroids. 2007;72:535–44.CrossRefGoogle Scholar
  45. 45.
    Sada K, Sugahara M, Kato K, Miyata M. Controlled expansion of a molecular cavity in a steroid host compound. J Am Chem Soc. 2001;123:4386–92.CrossRefGoogle Scholar
  46. 46.
    Kishu T, Siva K. Organometallic complexes of cholic acid and its antifungal activity. Dig J Nanomater Biostructures DJNB. 2011;6:575–9.Google Scholar
  47. 47.
    Kamitori S, Sumimoto V, Vongbupnimit K, Noguchi K, Okuyama K. Molecular and crystal-structures of dodecyltrimethylammonium bromide and its complex with P-phenylphenol. Mol Cryst Liq Cryst. 1997;300:31–43.CrossRefGoogle Scholar
  48. 48.
    Qiao Y, Lin Y, Yang Z, Chen H, Zhang S, Yan Y, et al. Unique temperature-dependent supramolecular self-assembly: from hierarchical 1D nanostructures to super hydrogel. J Phys Chem B. 2010;114:11725–30.CrossRefGoogle Scholar
  49. 49.
    Lange NA, Dean JA. Lange’s handbook of chemistry. New York: McGraw-Hill; 1979.Google Scholar
  50. 50.
    Alami E, Levy H, Zana R, Weber P, Skoulios A. A new smectic mesophase with two dimensional tetragonal symmetry from dialkyldimethylammonium bromides: ST. Liq Cryst. 1993;13:201–12.CrossRefGoogle Scholar
  51. 51.
    Maciej Hodorowicz KS. Architecture of the hydrophobic and hydrophilic layers as found from crystal structure analysis of N-benzyl-N,N-dimethylalkylammonium bromides. J Colloid Interface Sci. 2005;290:76–82.CrossRefGoogle Scholar
  52. 52.
    Terreros A, Galera-Gomez PA, Lopez-Cabaracos E. DSC and X-ray diffraction study of polymorphism in n-alkylammonium chlorides. J Therm Anal Calorim. 2000;61:341–50.CrossRefGoogle Scholar
  53. 53.
    Moribe K, Masaki M, Kinoshita R, Zhang J, Limwikrant W, Higashi K, et al. Guest molecular size-dependent inclusion complexation of parabens with cholic acid by cogrinding. Int J Pharm. 2011;420:191–7.CrossRefGoogle Scholar
  54. 54.
    Gdaniec M, Bytner T, Szyrszyng M, Połonski T. Inclusion compounds of nitrosobenzenes with cholic acid and deoxycholic acid. J Incl Phenom Macrocycl Chem. 2001;40:243–7.CrossRefGoogle Scholar
  55. 55.
    Kolehmainen E, Lahtinen M, Valkonen A, Behera B, Kauppinen R. N,N-Di-n-octyl-N,N-dimethyl and N,N-di-n-nonyl-N,N-dimethyl ammonium cholates: 13C and 15N CPMAS NMR, powder X-ray diffraction and thermoanalytical characterization. J Mol Struct. 2009;930:201–8.CrossRefGoogle Scholar
  56. 56.
    Kaneko T, Ichikawa A, Gong JP, Osada Y. Formation of giant needle-like polycation-bile acid complexes. Macromol Rapid Commun. 2003;24:789–92.CrossRefGoogle Scholar
  57. 57.
    Kimizuka N, Kawasaki T, Hirata K, Kunitake T. Supramolecular membranes. spontaneous assembly of aqueous bilayer membrane via formation of hydrogen bonded pairs of melamine and cyanuric acid derivatives. J Am Chem Soc. 1998;120:4094–104.CrossRefGoogle Scholar
  58. 58.
    Hattori N, Masuda H, Okabayashi H, O’Connor CJ. Crystal structures of bis(quaternaryammonium bromide) surfactants, ethanediyl-1,2-bis(butyldimethylammonium bromide) dihydrate and propanediyl-1,3-bis(butyldimethylammonium bromide). J Mol Struct. 1998;471:13–8.CrossRefGoogle Scholar
  59. 59.
    Berthier D, Buffeteau T, Léger J-M, Oda R, Huc I. From chiral counterions to twisted membranes. J Am Chem Soc. 2002;124:13486–94.CrossRefGoogle Scholar
  60. 60.
    Laschewsky A, Wattebled L, Arotçaréna M, Habib-Jiwan J-L, Rakotoaly RH. Synthesis and properties of cationic oligomeric surfactants. Langmuir. 2005;21:7170–9.CrossRefGoogle Scholar
  61. 61.
    Busico V, Ferraro A, Vacatello M. Thirmotropic smectic liquid crystals of ionic amphiphilic compounds: a general discussion. Mol Cryst Liq Cryst. 1985;128:243–61.CrossRefGoogle Scholar
  62. 62.
    Craievich AF, Denicolo I, Doucet J. Molecular motion and conformational defects in odd-numbered paraffins. Phys Rev B. 1984;30:4782–7.CrossRefGoogle Scholar
  63. 63.
    Iwamoto K, Ohnuki Y, Sawada K, Senō M. Solid–solid phase transitions of long-chain n-alkyltrimethylammonium halides. Mol Cryst Liq Cryst. 1981;73:95–103.CrossRefGoogle Scholar
  64. 64.
    Gray GW, Goodby JW. Smectic liquid crystals—textures and structures. Glasgow and London: Leonard Hill; 1984.Google Scholar
  65. 65.
    Shopova N, Milkova T. Thermochemical decomposition of cholic acid and its derivatives. Thermochim Acta. 1995;255:211–20.CrossRefGoogle Scholar
  66. 66.
    Chakrabarty A, Maitra U, Das AD. Metal cholate hydrogels: versatile supramolecular systems for nanoparticle embedded soft hybrid materials. J Mater Chem. 2012;22:18268–74.CrossRefGoogle Scholar
  67. 67.
    Terech P. Low-molecular weight organogelators. In: Robb ID, editor. Specialist surfactants. Springer: Dordrecht; 1997. p. 208–68.CrossRefGoogle Scholar
  68. 68.
    Singh S. Liquid crystals: fundamentals. Singapore: World Scientific; 2002.CrossRefGoogle Scholar
  69. 69.
    Beginn U. Thermotropic columnar mesophases from N–H···O, and N···H–O hydrogen bond supramolecular mesogenes. Prog Polym Sci. 2003;28:1049–105.CrossRefGoogle Scholar
  70. 70.
    Stinchcombe RB. Phase Transitions and Dimensionality. In: March N, Tosi M, editors. Polymers, liquid crystals and low-dimensional solids. Springer: New York; 1984. p. 335–400.CrossRefGoogle Scholar
  71. 71.
    Sands DE. Introduction to crystallography. New York: Dover Publications; 1993.Google Scholar
  72. 72.
    Tomašić V, Biliškov N, Mihelj T, Štefanić Z. Thermal behaviour and structural properties of surfactant-picrate compounds: the effect of the ammonium headgroup number. Thermochim Acta. 2013;569:25–35.CrossRefGoogle Scholar
  73. 73.
    Mihelj T, Popović J, Skoko Ž, Tomašić V. Thermotropic phase transitions of catanionic dodecylsulfates with multi-charged and multi-tailed quaternary ammonium centers. Thermochim Acta. 2014;591:119–29.CrossRefGoogle Scholar
  74. 74.
    Tomašić V, Mihelj T, Zhang R, Liu F, Ungar G. Mesomorphism of a new series of catanionic 4-(1-pentylheptyl)benzenesulfonates. Soft Matter. 2014;10:7887–96.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Tea Mihelj
    • 1
    Email author
  • Vlasta Tomašić
    • 1
  • Jasminka Popović
    • 2
  • Željko Skoko
    • 3
  1. 1.Laboratory for Synthesis And Processes of Self-Assembling of Organic Molecules, Department of Physical ChemistryRuđer Bošković InstituteZagrebCroatia
  2. 2.Division for Materials PhysicsRuđer Bošković InstituteZagrebCroatia
  3. 3.Department of Physics, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations