Journal of Thermal Analysis and Calorimetry

, Volume 129, Issue 2, pp 1243–1253 | Cite as

New complexes with 19-membered pyridine-based macrocycle ligand

Synthesis, characterization, thermal and in vitro anticancer activity
  • Hanaa A. El-BoraeyEmail author
  • Azza A. Serag El-Din
  • Ibrahim El Sayed


A novel series of transition metal complexes with 19-membered pyridine-based macrocycle ligand [L], i.e., 1,5,12,16-tetraaza-3,4:7,10:13,14-tribenzo1,16(2,6-pyrido)cyclononadecan-5,11 diene 2,15 dione, has been isolated and characterized. The mode of bonding and overall geometry of the complexes has been inferred through elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On basis of IR, MS, UV–Vis and EPR spectral studies, an octahedral geometry has been proposed for all complexes except Co(II) chloride and acetate and Cu(II) nitrate complexes that adopt tetrahedral or square planar geometry, respectively. The complexes were also screened for its in vitro anticancer activity against the breast cell line (MFC7) and human hepatocarcinoma cell line (HepG2); the results obtained show that they exhibit potent antitumor activity.


Penta-azamacrocycle Metal complexes Spectral studies Antitumor activity IC50 



The authors would like to thank Dr. Mahmoud Moawad Lecturer at the National Cancer Institute, Cairo University, Egypt, for his help with the in vitro anticancer activity.

Supplementary material

10973_2017_6169_MOESM1_ESM.docx (2.6 mb)
Supplementary material 1 (DOCX 2707 kb)


  1. 1.
    Chandra S, Verma S. Spectroscopic studies on transition metal complexes with N-donor tetradentate(N4) 12-membered macrocyclic ligand. Spectrochim Acta A. 2008;71:458–64.CrossRefGoogle Scholar
  2. 2.
    Timmos JC, Hubin TJ. Preperation and applications of synthetic linked azamacrocyclic ligands and complexes. Coord Chem Rev. 2010;254:1661–85.CrossRefGoogle Scholar
  3. 3.
    Mandal L, Sasmal S, Sparkes HA, Howard JAK, Mohanta S. Crystal structure, catecholase activity and ESI-MS of a mixed valence cobalt(III)–cobalt(II) complex derived from a macrocyclic ligand: identification/proposition of hydrogen bonded metal complex: solvent aggregates in ESI-MS. Inorg Chim Acta. 2014;412:38–45.CrossRefGoogle Scholar
  4. 4.
    Kong D, Xie Y. Synthesis, structural characterization of tetraazamacrocyclic ligand, five-coordinated zinc(II) complexes. Inorg Chim Acta. 2002;338:142–8.CrossRefGoogle Scholar
  5. 5.
    Raman N, Rajakumar R. Bis-amide transition metal complexes: isomerism and DNA interaction study. Spectrochim Acta A. 2014;120:428–36.CrossRefGoogle Scholar
  6. 6.
    Ferraudi G, Canales JC, Kharisov B, Costamagna J, Zagal JG, Cardenas-Jirón G, Paez M. Synthetic N-substituted metal aza-macrocyclic complexes: properties and applications. J Coord Chem. 2005;58:89–109.CrossRefGoogle Scholar
  7. 7.
    El-Gammal OA, Bekheit MM, El-Brashy SA. Synthesis, characterization and in vitro antimicrobial studies of Co(II), Ni(II) and Cu(II) complexes derived from macrocyclic compartmental ligand. Spectrochim Acta A. 2015;137:207–19.CrossRefGoogle Scholar
  8. 8.
    EL-Boraey HA, Emam SM, Tolan DA, El-Nahas AM. Structural studies and anticancer activity of a novel (N6O4) macrocyclic ligand and its Cu(II) complexes. Spectrochim Acta A. 2011;78:360–70.CrossRefGoogle Scholar
  9. 9.
    Numata M, Hiratani K, Nagawa Y, Houjou H, Masubuchi S, Akabori S. Efficient synthesis of novel macrocyclic tetraamide compounds: a unique reaction process involving both self-assembling and folding of intermediates. New J Chem. 2002;26:503–7.CrossRefGoogle Scholar
  10. 10.
    El-Boraey HA, Serag El-Din AA. Transition metal complexes of a new 15-membered [N5] penta-azamacrocyclic ligand with their spectral and anticancer studies. Spectrochim Acta A. 2014;132:663–71.CrossRefGoogle Scholar
  11. 11.
    El-Boraey HA, EL-Gammal OA. New 15-membered tetraaza (N4) macrocyclic ligand and its transition metal complexes: spectral, magnetic, thermal and anticancer activity. Spectrochim Acta A. 2015;138:533–62.CrossRefGoogle Scholar
  12. 12.
    Munjal M, Kumar S, Sharma SK, Gupta R. Nickel and copper complexes with few amide-based macrocyclic and open-chain ligands. Inorg Chim Acta. 2011;377:144–54.CrossRefGoogle Scholar
  13. 13.
    Mohamadou A, Moreau J, Dupont L, Wenger E. Equilibrium and structural studies of copper(II) complexes with tridentate ligand containing amide, pyrazyl and pyraidyl nitrogen donors: Effect of anions coligands on crystal structures of copper(II) complexes. Inorg Chim Acta. 2012;383:267–76.CrossRefGoogle Scholar
  14. 14.
    Bassett J, Denney RC, Jeffery GH, Mendham J. Textbook of quantitative inorganic analysis including elementary instrumental analysis. 4th ed. London: Longman Group; 1978. p. 316–22.Google Scholar
  15. 15.
    West TS. Complexometry with EDTA and related reagents. 3rd ed. London: DBH Ltd. Pools; 1969.Google Scholar
  16. 16.
    Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. New colorimetric cytotoxicity assay for anticancer–drug screening. J Natl Cancer Inst. 1990;82:1107–12.CrossRefGoogle Scholar
  17. 17.
    Geary WG. The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord Chem Rev. 1971;7:81–122.CrossRefGoogle Scholar
  18. 18.
    El-Boraey HA. Coordination behavior of tetraaza [N4] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: synthesis, spectroscopic characterization and anticancer activity. Spectrochim Acta A. 2012;97:255–62.CrossRefGoogle Scholar
  19. 19.
    Harinath Y, Reddy DHK, Kumar BN, Apparao C, Seshaiah K. Synthesis, spectral characterization and antioxidant activity studies of bidentate Schiff base, 5-methyl thiophene-2-carboxaldehyde-carbohydrazone and its Cd(II), Cu(II), Ni(II) and Zn(II) complexes. Spectrochim Acta A. 2013;101:264–72.CrossRefGoogle Scholar
  20. 20.
    El-Asmy AA, Al-Abdeen AZ, Abo El-Maaty WM, Mostafa MM. Synthesis and spectroscopic studies of 2,5-hexanedione bis(isonicotinylhydrazone) and its first raw transition metal complexes. Spectrochim Acta A. 2010;75:1516–22.CrossRefGoogle Scholar
  21. 21.
    Masoud MS, Hagagg SS, Ali AE, Nasr NM. Synthesis and spectroscopic characterization of gallic acid and some of its azo complexes. J Mol Struct. 2012;1014:17–25.CrossRefGoogle Scholar
  22. 22.
    Masoud MS, El-Marghany A, Orabi A, Ali AE, Sayed R. Spectral, coordination and thermal properties of 5-arylidene thiobarbituric acids. Spectrochim Acta A. 2013;107:179–87.CrossRefGoogle Scholar
  23. 23.
    Ajlouni AM, Taha ZA, Al-Hassan KA, Abu Anzeh AM. Synthesis, characterization, luminescence properties and antioxidant activity of Ln(III) complexes with a new aryl amide bridging ligand. J Lumin. 2012;132:1357–63.CrossRefGoogle Scholar
  24. 24.
    Masoud MS, Khalil EA, Hindawy AM, Ali AE, Mohamed EF. Spectroscopic studies on some azo compounds and their cobalt, copper and nickel complexes. Spectrochim Acta A. 2004;60:2807–17.CrossRefGoogle Scholar
  25. 25.
    Sherif OE, Abdel-Kader NS. Spectroscopic and biological activities studies of bivalent transition metal complexes of Schiff bases derived from condensation of 1,4-phenylenediamine and benzopyrone derivatives. Spectrochim Acta A. 2014;117:519–26.CrossRefGoogle Scholar
  26. 26.
    Joseyphus RS, Nair MS. UV-synthesis, characterization and biological studies of some Co(II), Ni(II) and Cu(II) complexes derived from indole-3- carboxaldehyde and glycylglycine as Schiff base ligand. Arab J Chem. 2010;3:195–204.CrossRefGoogle Scholar
  27. 27.
    El-Zahany EAM, El-seidy AMA, Drweesh SA, Youssef NS, Abdel-Wahab BF, El-Beih AA. Synthesis, characterization and biological activity of some transition metal complexes of pyrrolidine derivatives. J Appl Sci Res. 2013;9(3):2268–78.Google Scholar
  28. 28.
    Shebl M, Khalil SME, Al-Gohani FS. Preparation, spectral characterization and antimicrobial activity of binary and ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Ce(III) and UO2(VI) complexes of a thiocarbohydrazone ligand. J Mol Struct. 2010;980:78–87.CrossRefGoogle Scholar
  29. 29.
    Masoud MS, Mohamed RHA, Ali AE, El-Ziani NOM. Synthesis, spectral characterization and thermal analysis of some alloxan, carmine, naphthol yellow S and hematoxylin complexes. J Chem Pharm Res. 2016;8(1):639–62.Google Scholar
  30. 30.
    Becker CAL, Sebobi GS, Simane NT. Synthesis of tetra kis(alkylisocyanide) bis (triphenylstibine) cobalt(II) and tetrakis (alkylisocyanide) bis (triphenylstibine oxide) cobalt(III) complexes: ligand substitution and oxidation in (pentakisocyanide) cobalt(II). Inorg Chim Acta. 2002;334:327–33.CrossRefGoogle Scholar
  31. 31.
    Tyagi M, Chandra S, Akhtar J, Chand D. Modern spectroscopic technique in the characterization of biosensitive macrocyclic Schiff base ligand and its complexes: inhibitory activity against plantpathogenic fungi. Spectrochim Acta A. 2014;118:1056–61.CrossRefGoogle Scholar
  32. 32.
    Shakir M, Khanama S, Farha F, Latif Abdul, Al-Resayes MAS. Synthesis, spectroscopic characterization, DNA interaction and antibacterial study of metal complexes of tetraazamacrocyclic Schiff base. Spectrochim Acta A. 2012;93:354–62.CrossRefGoogle Scholar
  33. 33.
    Osowole AA, Akpan EJ. Synthesis, spectroscopic characterisation, In-vitro anticancer and antimicrobial activities of some metal(II) complexes of 3-{4, 6-dimethoxy pyrimidinyl) iminomethylnaphthalen-2-ol. Eur J Appl Sci. 2012;4(1):14–20.Google Scholar
  34. 34.
    El-Boraey HA, El-Salamony MA, Hathout AA. Macrocyclic [N5] transition metal complexes: synthesis, characterization and biological activities. J Incl Phenom Macrocycl Chem. 2016;86:153–66.CrossRefGoogle Scholar
  35. 35.
    Kivelson D, Neiman R. ESR studies on the bonding in copper complexes. J Chem Phys. 1961;35:149–55.CrossRefGoogle Scholar
  36. 36.
    Hathaway BJ, Billing DE. The electronic properties and stereochemistry of mononuclear complexes of the copper(II) ion. Coord Chem Rev. 1970;5:143–207.CrossRefGoogle Scholar
  37. 37.
    Mahmoud WH, Mohamed GG, El-Dessouky MMI. Coordination modes of bidentate lornoxicam drug with some transition metal ions. Synthesis, characterization and in vitro antimicrobial studies. Spectrochim Acta A. 2014;122:598–608.CrossRefGoogle Scholar
  38. 38.
    Donia AM, El-Boraey HA, El-Samalehy MF. Thermal investigation of iron(III) and manganese(II, III) complexes of dianils derived from 6-formylkhellin: synthesis, characterization. J Therm Anal Calorim. 2003;73:987–1000.CrossRefGoogle Scholar
  39. 39.
    Masoud MS, Abou El-Enein SA, Ramadan AM, Goher AS. Thermal properties of some biologically active 5-(p-substituted phenylazo)-6-aminouracil complexes. J Anal Appl Pyrol. 2008;81:45–51.CrossRefGoogle Scholar
  40. 40.
    El-Boraey HA. Structural and thermal studies of some aroylhydrazone Schiff’s bases-transition metal complexes. J Therm Anal Calorim. 2005;81:339–46.CrossRefGoogle Scholar
  41. 41.
    Shier WT. Mammalian cell culture on $5 a day: a laboratory manual of low cost methods. Los Banos: University of the Philippines; 1991.Google Scholar
  42. 42.
    Xiao-Yang Q, Su-Zhi L, An-Ran S, Qian-Qian L, Bin Z. Synthesis, crystal structure and cytotoxic activity of a zinc(II) complex of the Schiff base derived from s-benzyldithiocarbazate. Chin J Struct Chem. 2012;31(4):555–61.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Hanaa A. El-Boraey
    • 1
    Email author
  • Azza A. Serag El-Din
    • 1
  • Ibrahim El Sayed
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceMenoufia UniversityShebin El- KomEgypt

Personalised recommendations