Journal of Thermal Analysis and Calorimetry

, Volume 129, Issue 1, pp 135–145 | Cite as

Temperature-dependent AC electrical conductivity, thermal stability and different DC conductivity modelling of novel poly(vinyl cinnamate)/zinc oxide nanocomposites

  • M. T. Ramesan
  • P. Jayakrishnan
  • T. Sampreeth
  • P. P. Pradyumnan


Novel nanocomposites based on poly(vinyl cinnamate) (PVCin)/zinc oxide (ZnO) were prepared by in situ polymerization method using different mass percentages of ZnO nanoparticles. The formation of nanoparticles in the composites was analysed by TEM, FESEM, XRD, DSC and TG measurements. The TEM and SEM images showed the uniform dispersion of nanoparticles within PVCin matrix. The results of XRD indicated that the metal oxide particles had entered into macromolecular chain of PVCin. The glass transition temperature of the composites was shifted towards higher temperature with the increase in concentration of ZnO nanoparticles. Thermal stability studies showed a remarkable increase in thermal resistance of composites, and the thermal stability increases with an increase in concentration of metal oxide particles. The alternate current (AC) electrical conductivity of prepared composite has been investigated at different temperature at various frequencies. The electrical conductivity was found to be increased with increasing temperature, and it obeys power law. The activation energy was determined from the AC conductivity. DC conductivity of all the composites was much higher than pure PVCin, and the conductivity increases with increase in the concentration of nanoparticles up to 7 mass% and thereafter the conductivity decreases with further addition particles. The experimental conductivity of nanocomposite was compared with different theoretical conductivity using Scarbrick, Bueche and McCullough equation. The conductivity values obtained from McCullough model showed the same trend as experimentally determined conductivity values.


Poly(vinyl cinnamate) Zinc oxide Conductivity Thermal properties Temperature dependence Conductivity modelling Transmission electron microscopy 



The authors wish to thanks Prof. P. Pradeep, Department of Physics, NIT Calicut for providing necessary facilities in the department.


  1. 1.
    Ramezanzadeh B, Attar MM, Farzam M. Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite. J Therm Anal Calorim. 2011;103:731–9.CrossRefGoogle Scholar
  2. 2.
    Janowska G, Mikolajczyk T, Olejnik M. Thermal properties and flammability of fibres made from polyimidoamide nanocomposite. J Therm Anal Calorim. 2007;88:843–9.CrossRefGoogle Scholar
  3. 3.
    Stefanescu O, Vlase G, Barbu M, Stefanescu M. Preparation of CuFe2O4/SiO2 nanocomposite starting from Cu(II)–Fe(III) carboxylates embedded in hybrid silica gels. J Therm Anal Calorim. 2013;113:1245–53.CrossRefGoogle Scholar
  4. 4.
    Mojumdar SC, Raki L. Preparation, thermal, spectral and microscopic studies of calcium silicate hydrate–poly(acrylic acid) nanocomposite materials. J Therm Anal Calorim. 2006;85:99–105.CrossRefGoogle Scholar
  5. 5.
    Jayakrishnan P, Ramesan MT. Studies on the effect of magnetite nanoparticles on magnetic, mechanical, thermal, temperature dependent electrical resistivity and DC conductivity modeling of poly(vinyl alcohol-co-acrylic acid)/Fe3O4 nanocomposites. Mater Chem Phys. 2017;186:513–22.CrossRefGoogle Scholar
  6. 6.
    Tjong S, Liang G. Electrical properties of low-density polyethylene/multiwalled carbon nanotube nanocomposites. Mater Chem Phys. 2006;100:1–5.CrossRefGoogle Scholar
  7. 7.
    Erceg M, Kresic I, Jakic M, Andricic B. Kinetic analysis of poly(ethylene oxide)/lithium montmorillonite nanocomposites. J Therm Anal Calorim. 2017;127:789–97.CrossRefGoogle Scholar
  8. 8.
    Wu SY, Tong X, Nie CD, Peng DQ, Gong SG, Wang ZQ. The effects of various carbon nanofillers on the thermal properties of paraffin for energy storage applications. J Therm Anal Calorim. 2016;124:181–8.CrossRefGoogle Scholar
  9. 9.
    Liufu SC, Xiao HN, Li YP. Thermal analysis and degradation mechanism of polyacrylate/Zno nanocomposites. Polym Degrad Stab. 2005;87:103–10.CrossRefGoogle Scholar
  10. 10.
    Ramesan MT. Fabrication characterization and properties of poly(ethylene-co-vinyl acetate)/magnetite nanocomposites. J Appl Polym Sci. 2014;131:3681–9.CrossRefGoogle Scholar
  11. 11.
    Xiong HM, Zhao X, Chen JS. New polymer–inorganic composites: PEO–ZnO and PEO–Zno–LiClO4 films. J Phys Chem B. 2001;105:10169–74.CrossRefGoogle Scholar
  12. 12.
    Qi Y, Zhang J, Qiu S, Sun L, Xu F, Zhu M, Ouyang L, Sun D. Thermal stability, decomposition and glass transition behavior of PANI/NiO composites. J Therm Anal Calorim. 2009;98:533–7.CrossRefGoogle Scholar
  13. 13.
    Tang E, Cheng G, Pang X, Ma X, Xing F. Synthesis of nano-Zno/poly(methyl mathacrylate composite microsphere through emulsion polymerization and its UV-shielding property. Colloid Polym Sci. 2006;284:422–8.CrossRefGoogle Scholar
  14. 14.
    Ahmed J, Arfat YA, Aguirre CE, Auras R. Thermal properties of ZnO and bimetallic Ag–Cu alloy reinforced poly(lactic acid) nanocomposite films. J Therm Anal Calorim. 2016;125:205–14.CrossRefGoogle Scholar
  15. 15.
    Xiong M, Gu G, You B, Wu L. Preparation and characterization of poly(styrene butyl acrylate) latex/nano-Zno nanocomposites. J Appl Polym Sci. 2003;90:1923–31.CrossRefGoogle Scholar
  16. 16.
    Elashmawi I, Hakeem N, Marei L, Hanna F. Structure and performance of ZnO/PVC nanocomposites. Phys B. 2010;405:4163–9.CrossRefGoogle Scholar
  17. 17.
    Kim J, Hong SM, Kwak S, Seo Y. Physical properties of nanocomposites prepared by in situ polymerization of high-density polyethylene on multiwalled carbon nanotubes. Phys Chem Chem Phys. 2009;11:10851–9.CrossRefGoogle Scholar
  18. 18.
    Ramesan MT, Pradyumnan PP. Synthesis and electrical conductivity studies of poly(methyl methacrylate) in presence transition metal ions. AIP Conf Proc. 2011;1391:658–60.CrossRefGoogle Scholar
  19. 19.
    Zoromba MS, Hosn NM. Synthesis of Fe2O3, Co3O4 and NiO nanoparticles by thermal decomposition of doped polyaniline precursors. J Therm Anal Calorim. 2015;119:605–11.CrossRefGoogle Scholar
  20. 20.
    Ramesan MT. Poly(ethylene-co-vinyl acetate)/magnetite nanocomposites: interaction of some liquid fuels, thermal and oil resistance studies. Polym Polym Compos. 2015;23:85–92.Google Scholar
  21. 21.
    Suhailath K, Ramesan MT, Naufal B, Periyat P, Jasna VC, Jayakrishnan P. Synthesis, characterisation, flame, thermal and electrical properties of poly(n-butyl methacrylate)/titanium dioxide nanocomposites. Polym Bull. 2016;. doi: 10.1007/s00289-016-1737-9.Google Scholar
  22. 22.
    Singh S, Srivastava P, Kapoor IPS, Singh G. Preparation, characterization, and catalytic activity of rare earth metal oxide nanoparticles. J Therm Anal Calorim. 2013;111:1073–82.CrossRefGoogle Scholar
  23. 23.
    Ramesan MT. Synthesis, characterization and properties of new conducting polyaniline/copper sulphide nanocomposites. Polym Eng Sci. 2014;54:438–45.CrossRefGoogle Scholar
  24. 24.
    Ramesan MT. Synthesis, characterization and conductivity studies of polypyrrole/copper sulfide nanocomposites. J Appl Polym Sci. 2013;128:1540–6.Google Scholar
  25. 25.
    Zabihi O, Khodabandeh A. Understanding of thermal/thermo-oxidative degradation kinetics of polythiophene nanoparticles. J Therm Anal Calorim. 2013;112:1507–13.CrossRefGoogle Scholar
  26. 26.
    Jayakrishnan P, Pradyumnan PP, Ramesan MT. Thermal and electrical properties of polyindole/magnetite nanocomposites. Chemist. 2016;89:27–32.Google Scholar
  27. 27.
    Kim HT, Park JK. Thermal degradation of poly(vinyl cinnamate). Polym Bull. 1998;41:325–31.CrossRefGoogle Scholar
  28. 28.
    Du H, Zhang J. The synthesis of poly(vinyl cinnamates) with light-induced shape fixity properties. Sens Actuators A. 2012;179:114–20.CrossRefGoogle Scholar
  29. 29.
    Gaur MS, Indolia AP. Thermally stimulated dielectric properties of polyvinylidenefluoride–zinc oxide nanocomposites. J Therm Anal Calorim. 2011;103:977–85.CrossRefGoogle Scholar
  30. 30.
    Jayakrishnan P, Ramesan MT. Synthesis, characterization, electrical conductivity and material properties of magnetite/polyindole/poly(vinyl Alcohol) blend nanocomposites. J Inorg Organomet Polym. 2017;27:323–33.CrossRefGoogle Scholar
  31. 31.
    Ramesan MT, George A, Jayakrishnan P, Kalaprasad G. Role of pumice particles in the thermal, electrical and mechanical properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) composites. J Therm Anal Calorim. 2016;126:511–9.CrossRefGoogle Scholar
  32. 32.
    Ramesan MT, Jayakrishnan P. Role of nickel oxide nanoparticles on magnetic, thermal and temperature dependent electrical conductivity of novel poly(vinyl cinnamate) based nanocomposites: applicability of different conductivity models. J Inorg Organomet Polym. 2017;27:143–53.CrossRefGoogle Scholar
  33. 33.
    Ounaies Z, Park C, Wise KE, Siochi EJ, Harrison JS. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos Sci Technol. 2003;63:1637–46.CrossRefGoogle Scholar
  34. 34.
    Loiu C, Kenji O, Masato S, Shinnosuke M. Anisotropic conductivity-temperature characteristic of solution-cast poly(3-hexylthiophene) films. Synth Met. 2006;156:1362–7.CrossRefGoogle Scholar
  35. 35.
    Gupta K, Chakaraborty G, Jana PC, Meikap AK. Direct current conductivity of polyaniline-cobalt chloride nanocomposite prepared by wet chemical. J Phys Sci. 2009;13:251–60.Google Scholar
  36. 36.
    Nihmath A, Ramesan MT. Development, characterization and conductivity studies of chlorinated EPDM. AIP Conf Proc. 2014;1620:353–9.CrossRefGoogle Scholar
  37. 37.
    McCullough RL. Generalized combining rules for predicting transport properties of composite materials. Compos Sci Technol. 1985;22:3–21.CrossRefGoogle Scholar
  38. 38.
    Bueche F. Electrical resistivity of conducting particles in an insulating matrix. J Appl Phys. 1972;43:4837–8.CrossRefGoogle Scholar
  39. 39.
    Sohi NJS, Bhadra S, Khastgi D. The effect of different carbon fillers on the electrical conductivity of ethylene vinyl acetate copolymer-based composites and the applicability of different conductivity models. Carbon. 2011;49:1349–61.CrossRefGoogle Scholar
  40. 40.
    Scarisbrick RM. Electrical conducting mixtures. J Phys D Appl Phys. 1973;6:2098–110.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • M. T. Ramesan
    • 1
  • P. Jayakrishnan
    • 1
  • T. Sampreeth
    • 1
  • P. P. Pradyumnan
    • 2
  1. 1.Department of ChemistryUniversity of CalicutMalappuramIndia
  2. 2.Department of PhysicsUniversity of CalicutMalappuramIndia

Personalised recommendations