Journal of Thermal Analysis and Calorimetry

, Volume 128, Issue 3, pp 1811–1824 | Cite as

Optical and kinetics of thermal decomposition of PMMA/ZnO nanocomposites

  • M. Khairy
  • N. H. Amin
  • R. Kamal


PMMA/ZnO nanocomposites with different concentrations of nano-ZnO were prepared by in situ polymerization method. The effect of ZnO on the morphology, optical properties and thermal degradation kinetics of PMMA was investigated by means of XRD, TEM, FTIR, TG–DSC, photoluminescence (PL) spectra and UV–visible absorption spectra. The introduction of ZnO into PMMA slightly increases its thermal stability. The PL intensity of PMMA/ZnO nanocomposites increases with increasing the concentration of ZnO in the PMMA. The kinetic parameters were evaluated from TG data by several integral and iso-conversional methods. Based on the iterative iso-conversional calculation procedure, the activation energy values E it for the decomposition steps obtained were evaluated. The activation energy values for the thermal degradation of the nanocomposites were higher than that of pure PMMA. The most probable mechanism functions for the degradation of PMMA and its nanocomposite are suggested.


PMMA Nano-ZnO Nanocomposites Thermogravimetric analysis Non-isothermal decomposition kinetics Kinetic models 



The authors are grateful for Prof. Dr. Mahmoud Ahmed Mousa for his supporting and helping us for completing this work.


  1. 1.
    Nie S, Zhou C, Peng C, Liu L, Zhang C, Dong X, Wang D. Thermal oxidative degradation kinetics of novel intumescent flame-retardant polypropylene composites. J Therm Anal Calorim. 2015;120:1183–91.CrossRefGoogle Scholar
  2. 2.
    Saladino ML, Motaung TE, Luyt AS, Spinella A, Nasillo G, Caponetti E. The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of PMMA. Poly Degrad Stab. 2012;97:452–9.CrossRefGoogle Scholar
  3. 3.
    Viratyaporn W, Lehman RL. Effect of nanoparticles on the thermal stability of PMMA nanocomposites prepared by in situ bulk polymerization. J Therm Anal Calorim. 2011;103:267–73.CrossRefGoogle Scholar
  4. 4.
    Achilias DS, Nikolaidis AK, Karayannidis GP. PMMA/organomodified montmorillonite nanocomposites prepared by in situ bulk polymerization. J Therm Anal Calorim. 2010;102:451–60.CrossRefGoogle Scholar
  5. 5.
    Canché-Escamilla G, Duarte-Aranda S, Toledano M. Synthesis and characterization of hybrid silica/PMMA nanoparticles and their use as filler in dental composites. Mater Sci Eng C. 2014;42:161–7.CrossRefGoogle Scholar
  6. 6.
    Wahab R, Hwang IH, Kim YS, Musarrat J, Siddiqui MA, Seo HK, Tripathy SK, Shin HS. Non-hydrolytic synthesis and photocatalytic studies of ZnO nanoparticles. Chem Eng J. 2011;175:450–7.CrossRefGoogle Scholar
  7. 7.
    Sadeghi B. Preparation of ZnO/Ag nanocomposite and coating on polymers for anti-infection biomaterial application. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;118:787–92.CrossRefGoogle Scholar
  8. 8.
    Zhang Y, Zhuang S, Xu X, Hu J. Transparent and UV-shielding ZnO@PMMA nanocomposite films. Opt Mater. 2013;36:169–72.CrossRefGoogle Scholar
  9. 9.
    Matai I, Sachdev A, Dubey P, Kumar SU, Bhushan B, Gopinath P. Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids Surf B. 2014;115:359–67.CrossRefGoogle Scholar
  10. 10.
    Razavi RS, Estarkia MRL, Khouzanib MF, Barekata M, Jamali H. Large scale synthesis of zinc oxide nano- and submicro-structures by Pechini’s method: effect of ethylene glycol/citric acid mole ratio on structural and optical properties. Curr Nanosci. 2011;7:807–12.CrossRefGoogle Scholar
  11. 11.
    Rotaru A, Constantinescu C, Mândruleanu A, Rotaru P, Moldovan A, Győryová K, Dinescu M, Balek V. Matrix assisted pulsed laser evaporation of zinc benzoate for ZnO thin films and non-isothermal decomposition kinetics. Thermochim Acta. 2010;498:81–91.CrossRefGoogle Scholar
  12. 12.
    Šesták J, Berggren G. Study of the kinetics of mechanism of solid-state reactions at increasing temperature. Thermochim Acta. 1971;3:1–12.CrossRefGoogle Scholar
  13. 13.
    Cheng Z, Wu W, Ji P, Zhou X, Liu R, Cai J. Applicability of Fraser-Suzuki function in kinetic analysis of DAEM processes and lignocellulosic biomass pyrolysis processes. J Therm Anal Calorim. 2015;119:1429–38.CrossRefGoogle Scholar
  14. 14.
    Mendonça ARV, de Souza SMAGU, Valle JAB, de Souza AAU. Thermogravimetric analysis and kinetic study of pyrolysis and combustion of residual textile sludge. J Therm Anal Calorim. 2015;121:807–14.CrossRefGoogle Scholar
  15. 15.
    Liqing L, Donghua C. Application of iso-temperature method of multiple rate to kinetic analysis. Dehydration for calcium oxalate monohydrate. J Therm Anal Calorim. 2004;78:283–93.CrossRefGoogle Scholar
  16. 16.
    Shobhana E. X-ray diffraction and UV-visible studies of PMMA thin films. Int J Innov Sci Mod Eng. 2012;2:1092–5.Google Scholar
  17. 17.
    Tang E, Cheng G, Ma X. Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles. Powder Technol. 2006;161:209–14.CrossRefGoogle Scholar
  18. 18.
    Saladino ML, Zanotto A, Chillura Martino D, Spinella A, Nasillo G, Caponetti E. Ce:YAG nanoparticles embedded in a PMMA matrix: preparation and characterization. Langmuir. 2010;26:13442–9.CrossRefGoogle Scholar
  19. 19.
    Debanath MK, Karmakar S. Study of blue shift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Mater Lett. 2013;111:116–9.CrossRefGoogle Scholar
  20. 20.
    Kulyka B, Kapustianyk V, Tsybulskyy V, Krupka O, Sahraoui B. Optical properties of ZnO/PMMA nanocomposite films. J Alloy Compd. 2010;502:24–7.CrossRefGoogle Scholar
  21. 21.
    Hongjun L, Zang Z, Tang X. Synthesis mechanism and optical properties of well nanoflower-shaped ZnO abricated by a facile method. Optical Mater Exp. 2014;4:1762–9.CrossRefGoogle Scholar
  22. 22.
    Du XW, Fu YS, Sun J, Han X, Liu J. Complete UV emission of ZnO nanoparticles in a PMMA matrix. Semicond Sci Technol. 2006;21:1202–6.CrossRefGoogle Scholar
  23. 23.
    Liu YL, Hsu CY, Hsu KY. Poly(methylmethacrylate)-silica nanocomposites films from surface-functionalized silica nanoparticles. Polymer. 2005;46:1851–6.CrossRefGoogle Scholar
  24. 24.
    Kashiwagi T, Inaba A, Brown EJ. Effects of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates). Macromolecules. 1986;19:2160–8.CrossRefGoogle Scholar
  25. 25.
    Ferriol M, Gentilhomme A, Cochez M, Oget N, Mieloszynski JL. Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polym Degrad Stab. 2003;79:271–81.CrossRefGoogle Scholar
  26. 26.
    Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.CrossRefGoogle Scholar
  27. 27.
    Wanjun T, Yuwen L, Hen Z, Zhiyong W, Cunxin W. New temperature integral approximate formula for non-isothermal kinetic analysis. J Therm Anal Calorim. 2003;74:309–15.CrossRefGoogle Scholar
  28. 28.
    Madhysudanan PM, Krishnan K, Ninan KN. New approximation for the p(x) functions in the evaluation of non-isothermal kinetic data. Thermochim Acta. 1986;97:189–201.CrossRefGoogle Scholar
  29. 29.
    Kok MV, Gul KG. Thermal characteristics and kinetics of crude oils and SARA fractions. Thermochim Acta. 2013;569:66–70.CrossRefGoogle Scholar
  30. 30.
    Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.CrossRefGoogle Scholar
  31. 31.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to phenolic plastic. J Polym Sci Part C Polym Symp. 1964;6:183–95.CrossRefGoogle Scholar
  32. 32.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  33. 33.
    Ye Q, Huang Z, Hao Y. Kinetic study of thermal degradation of poly(l-lactide) filled with β-zeolite. J Therm Anal Calorim. 2016;124:1471–84.CrossRefGoogle Scholar
  34. 34.
    Zhang S, Wang S, Huang Z, Li Y, Tan Z. A kinetic analysis of thermal decomposition of polyaniline and its composites with rare earth oxides. J Therm Anal Calorim. 2015;119:1853–60.CrossRefGoogle Scholar
  35. 35.
    Popescu C. Integral method to analyze the kinetics of heterogeneous reactions under nonisothermal conditions a variant on the Ozawa–Flynn–Wall method. Thermochim Acta. 1996;285:309–23.CrossRefGoogle Scholar
  36. 36.
    Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977;11:445–7.CrossRefGoogle Scholar
  37. 37.
    Valanciene E, Miknius L, Pedisius N. The influence of zeolite catalyst on kinetics and thermodynamics of polypropylene waste thermal degradation. J Therm Anal Calorim. 2016;124:341–54.CrossRefGoogle Scholar
  38. 38.
    Kok MV. The chemistry, kinetics, and potential utilization of different origins of bentonite samples. Energy Sources. 2014;36:173–83.CrossRefGoogle Scholar
  39. 39.
    Chen FX, Zhou CR, Li GP. Study on thermal decomposition and the non-isothermal decomposition kinetics of glyphosate. J Therm Anal Calorim. 2012;109:1457–62.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceBenha UniversityBenhaEgypt
  2. 2.Chemistry Department, College of scienceAl-Imam Muhammad Ibn Saud Islamic UniversityRiyadhKingdom of Saudi Arabia
  3. 3.Chemistry Department, Faculty of EducationAin Shams UniversityRoxy, CairoEgypt

Personalised recommendations