Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 128, Issue 3, pp 1783–1792 | Cite as

Enhanced thermal properties of Li2CO3–Na2CO3–K2CO3 nanofluids with nanoalumina for heat transfer in high-temperature CSP systems

  • Zhaoli Zhang
  • Yanping YuanEmail author
  • Liping Ouyang
  • Qinrong Sun
  • Xiaoling Cao
  • Sami Alelyani
Article

Abstract

Nanofluids of Li2CO3–Na2CO3–K2CO3 improved by three nano-Al2O3 samples are firstly prepared by means of two-step aqueous method to enhance thermal properties for high-temperature heat transfer, when used as heat transfer fluids and thermal energy systems for concentrating solar power systems. Specific heat of ternary carbonates containing Al2O3 of 0.2, 0.4, 0.8, 1.0, 1.4 and 2.0 mass% is measured, and nanofluids with 1.0 mass% of 20-nm Al2O3, 1.0 mass% of 50-nm Al2O3 and 0.8 mass% of 80-nm Al2O3 are selected as superior candidates. The maximum enhancement of specific heat is 18.5% in solid and 33.0% in liquid, 17.9% in solid and 22.7% in liquid, 13.2% in solid and 17.5% in liquid for nanofluids containing 20-, 50- and 80-nm Al2O3. Thermal conductivity is, respectively, improved by 23.3, 28.5 and 30.9% under the addition of Al2O3. New chemical bonds and crystals are scarcely formed in composites through FT-IR and XRD determination. SEM images certify that nano-Al2O3 are homogeneously mixed into nanofluids and this structure may be a critical incentive for enhancing thermal properties. There are no significant changes with respect to the heat flow, melting/freezing point and latent heat after the 30 circles of determination. Briefly, it can be speculated that these nanofluids will exhibit tremendous potential in the coming applications of heat transfer and thermal storage for concentrating solar power systems.

Keywords

Thermal properties Nanofluids Carbonate ternary Heat transfer fluids Thermal energy system 

Notes

Acknowledgements

This work was supported by Sichuan Province Youth Science and Technology Innovation Team of Building Environment and Energy Efficiency (2015TD0015) and 2015 Cultivation Program for the Excellent Doctoral Dissertation of Southwest Jiaotong University.

References

  1. 1.
    Liu M, Steven Tay NH, Bell S, Belusko M, Jacob R, Will G, et al. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew Sustain Energy Rev. 2016;53:1411–32.CrossRefGoogle Scholar
  2. 2.
    Xu B, Li P, Chan C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy. 2015;160:286–307.CrossRefGoogle Scholar
  3. 3.
    Ahammed N, Asirvatham LG, Wongwises S. Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications. J Therm Anal Calorim. 2016;123(2):1399–409.CrossRefGoogle Scholar
  4. 4.
    Li G. Sensible heat thermal storage energy and exergy performance evaluations. Renew Sustain Energy Rev. 2016;53:897–923.CrossRefGoogle Scholar
  5. 5.
    Veluswamy HP, Wong AJH, Babu P, Kumar R, Kulprathipanja S, Rangsunvigit P, et al. Rapid methane hydrate formation to develop a cost effective large scale energy storage system. Chem Eng J. 2016;290:161–73.CrossRefGoogle Scholar
  6. 6.
    Bellan S, Alam TE, González-Aguilar J, Romero M, Rahman MM, Goswami DY, et al. Numerical and experimental studies on heat transfer characteristics of thermal energy storage system packed with molten salt PCM capsules. Appl Therm Eng. 2015;90:970–9.CrossRefGoogle Scholar
  7. 7.
    Vignarooban K, Xu X, Arvay A, Hsu K, Kannan AM. Heat transfer fluids for concentrating solar power systems—a review. Appl Energy. 2015;146:383–96.CrossRefGoogle Scholar
  8. 8.
    Zhao CY, Wu ZG. Thermal property characterization of a low melting-temperature ternary nitrate salt mixture for thermal energy storage systems. Sol Energy Mater Sol Cells. 2011;95(12):3341–6.CrossRefGoogle Scholar
  9. 9.
    Mirmasoumi S, Behzadmehr A. Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube. Int J Heat Fluid Flow. 2008;29(2):557–66.CrossRefGoogle Scholar
  10. 10.
    Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf. 2004;47(24):5181–8.CrossRefGoogle Scholar
  11. 11.
    Beheshti A, Shanbedi M, Heris SZ. Heat transfer and rheological properties of transformer oil-oxidized MWCNT nanofluid. J Therm Anal Calorim. 2014;118(3):1451–60.CrossRefGoogle Scholar
  12. 12.
    Tao YB, Lin CH, He YL. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material. Energy Convers Manag. 2015;97:103–10.CrossRefGoogle Scholar
  13. 13.
    Heris SZ, Esfahany MN, Etemad SG. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow. 2007;28(2):203–10.CrossRefGoogle Scholar
  14. 14.
    Heris SZ, Etemad SG, Esfahany MN. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass. 2006;33(4):529–35.CrossRefGoogle Scholar
  15. 15.
    Akbari M, Behzadmehr A, Shahraki F. Fully developed mixed convection in horizontal and inclined tubes with uniform heat flux using nanofluid. Int J Heat Fluid Flow. 2008;29(2):545–56.CrossRefGoogle Scholar
  16. 16.
    Maïga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow. 2005;26(4):530–46.CrossRefGoogle Scholar
  17. 17.
    Moghaddam MB, Goharshadi EK, Entezari MH, Nancarrow P. Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. Chem Eng J. 2013;231:365–72.CrossRefGoogle Scholar
  18. 18.
    Xu Y, Zheng Q, Song Y. Comparison studies of rheological and thermal behaviors of ionic liquids and nanoparticle ionic liquids. Phys Chem Chem Phys. 2015;17(30):19815–9.CrossRefGoogle Scholar
  19. 19.
    Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125(1):527–35.CrossRefGoogle Scholar
  20. 20.
    Esfe MH, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of MgO-water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119(2):1205–13.CrossRefGoogle Scholar
  21. 21.
    Habibzadeh S, Kazemi-Beydokhti A, Khodadadi AA, Mortazavi Y, Omanovic S, Shariat-Niassar M. Stability and thermal conductivity of nanofluids of tin dioxide synthesized via microwave-induced combustion route. Chem Eng J. 2010;156(2):471–8.CrossRefGoogle Scholar
  22. 22.
    Mirmasoumi S, Behzadmehr A. Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model. Appl Therm Eng. 2008;28(7):717–27.CrossRefGoogle Scholar
  23. 23.
    Zhang ZL, Yuan YP, Zhang HQ, Cao XL, Sun LL, Phelan PE. Thermal properties of ternary carbonate/T-ZnOw for heat transfer in high-temperature concentrating solar power systems. Compos Part A. 2016. doi: 10.1016/j.compositesa.2016.11.026.Google Scholar
  24. 24.
    Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys. 2009;106(1):014304.CrossRefGoogle Scholar
  25. 25.
    Myers PD, Alam TE, Kamal R, Goswami DY, Stefanakos E. Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer. Appl Energy. 2016;165:225–33.CrossRefGoogle Scholar
  26. 26.
    Dudda B, Shin D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications. Int J Therm Sci. 2013;69:37–42.CrossRefGoogle Scholar
  27. 27.
    Shin D, Banerjee D. Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures. J Heat Transf. 2013;135(3):032801.CrossRefGoogle Scholar
  28. 28.
    Ho MX, Pan C. Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity. Int J Heat Mass Transf. 2014;70:174–84.CrossRefGoogle Scholar
  29. 29.
    Bahiraei Mehdi. A numerical study of heat transfer characteristics of CuO–water nanofluid by Euler–Lagrange approach. J Therm Anal Calorim. 2016;123(2):1591–9.CrossRefGoogle Scholar
  30. 30.
    Shin D, Banerjee D. Enhanced specific heat of silica nanofluid. J Heat Transf. 2011;133(2):024501.CrossRefGoogle Scholar
  31. 31.
    Shin D, Banerjee D. Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications. Int J Heat Mass Transf. 2015;84:898–902.CrossRefGoogle Scholar
  32. 32.
    Shin D, Banerjee D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int J Heat Mass Transf. 2011;54(5–6):1064–70.CrossRefGoogle Scholar
  33. 33.
    Chieruzzi M, Miliozzi A, Crescenzi T, Kenny JM. A new phase change material based on potassium nitrate with silica and alumina nanoparticles for thermal energy storage. Nanoscale Res Lett. 2015;10:273.CrossRefGoogle Scholar
  34. 34.
    Chieruzzi M, Cerritelli GF, Miliozzi A, Kenny JM. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Res Lett. 2013;8:448.CrossRefGoogle Scholar
  35. 35.
    Fernández AG, Ushak S, Galleguillos H, Pérez FJ. Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants. Appl Energy. 2014;119:131–40.CrossRefGoogle Scholar
  36. 36.
    Shin D, Tiznobaik H, Banerjee D. Specific heat mechanism of molten salt nanofluids. Appl Phys Lett. 2014;104(12):121914.CrossRefGoogle Scholar
  37. 37.
    Shenogin S. Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J Appl Phys. 2004;95(12):8136.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Zhaoli Zhang
    • 1
  • Yanping Yuan
    • 1
    Email author
  • Liping Ouyang
    • 1
  • Qinrong Sun
    • 1
  • Xiaoling Cao
    • 1
  • Sami Alelyani
    • 2
  1. 1.School of Mechanical EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.School for Engineering of Matter, Transport and EnergyArizona State UniversityTempeUSA

Personalised recommendations