Journal of Thermal Analysis and Calorimetry

, Volume 128, Issue 2, pp 807–817 | Cite as

Preparation, spectroscopic and thermal analysis of hexa-hydrazine nickel cobalt ferrous succinate precursor and study of solid-state properties of its nanosized thermal product, Ni0.5Co0.5Fe2O4

  • Daniel M. Coutinho
  • V. M. S. Verenkar


Nickel cobalt ferrite, Ni0.5Co0.5Fe2O4, has been prepared by precursor combustion technique from hexa-hydrazine nickel cobalt ferrous succinate precursor. The precursor was characterized by chemical analysis, CHNS analysis, infrared spectroscopy, TG–DTA and mass loss studies. The thermal data show how the precursor decomposes in four steps to give stable ferrite phase. The precursor decomposes autocatalytically once initially ignited, to give the ‘as-prepared’ nano-spinel ferrite. The X-ray diffraction analysis reveals single cubic spinel phase structure. The infrared measurements between 4000 and 350 cm−1 confirmed the intrinsic cation vibrations of the spinel structure. The SEM image clearly shows the nanosized nature of the ferrite. The dielectric constant and loss tangent are found to decrease with increase in frequency which is due to Maxwell–Wagner interfacial polarization. The loss tangent shows a relaxation peak at ~1 kHz. The variation of DC electrical resistivity with temperature indicates semiconductor behaviour. The temperature- and field-dependent magnetization data of ‘as-prepared’ ferrite reveal that the lattice has either a canted or partially misaligned spin structure due to the nanosized nature of the ferrite.


Hexa-hydrazine metal succinate precursor Thermal analysis Auto catalytic decomposition Magnetic nanoparticles Dielectric relaxation Magnetic properties Magnetic anisotropy 



The authors are grateful for financial support from DST, New Delhi through the Nano-Mission Project, No. SR/NM/NS-86/2009 and also from FIST. The author D.M. Coutinho is grateful to UGC, New Delhi for financial assistance under UGC-BSR fellowship, No. F.4-1/2006 (BSR)/7-69/2007 (BSR) and also under UGC-SAP programme. The authors are also thankful to Mr. Girish Prabhu, N.I.O. Goa for XRD facility and Mr. M.G. Lanjewar, Goa University for recording SEM images.


  1. 1.
    Hajarpour S, Raouf AH, Gheisari Kh. Structural evolution and magnetic properties of nanocrystalline magnesium-zinc soft ferrites synthesized by glycine-nitrate combustion process. J Magn Magn Mater. 2014;363:21–5.CrossRefGoogle Scholar
  2. 2.
    Mittal VK, Chandramohan P, Bera S, Srinivasan MP, Velmurugan S, Narasimhan SV. Cation distribution in NixMg1−xFe2O4 studied by XPS and mössbauer spectroscopy. Solid State Commun. 2006;137:6–10.CrossRefGoogle Scholar
  3. 3.
    Rodrigues APG, Gomes DKS, Araújo JH, Melo DMA, Oliveira NAS, Braga RM. Nanoferrites of nickel doped with cobalt: influence of Co2+ on the structural and magnetic properties. J Magn Magn Mater. 2015;374:748–54.CrossRefGoogle Scholar
  4. 4.
    Shirsath SE, Kadam RH, Gaikwad AS, Ghasemi A, Morisako A. Effect of sintering temperature and the particle size on the structural and magnetic properties of nanocrystalline Li0.5Fe2.5O4. J Magn Magn Mater. 2011;323:3104–8.CrossRefGoogle Scholar
  5. 5.
    Bayoumy WA, Gabal MA. Synthesis, characterization and magnetic properties of Cr-substituted NiCuZn nanocrystalline ferrite. J Alloys Compd. 2010;506:205–9.CrossRefGoogle Scholar
  6. 6.
    Choi W, Lee J, Kang B, Chae KP. Crystallographic and magnetic properties of nano-sized nickel substituted cobalt ferrites synthesized by the sol-gel method. J Magn. 2007;19(1):59–63.CrossRefGoogle Scholar
  7. 7.
    Kasapoğlu N, Baykal A, Köseoğlu Y, Toprak MS. Microwave-assisted combustion synthesis of CoFe2O4 with urea, and its magnetic characterization. Scr Mater. 2007;57:441–4.CrossRefGoogle Scholar
  8. 8.
    Ding J, McCormick PG, Street R. Magnetic properties of mechanically alloyed CoFe2O4. Solid State Commun. 1995;95:31–3.CrossRefGoogle Scholar
  9. 9.
    Mozaffari M, Amighian J, Darsheshdar E. Magnetic and structural studies of nickel-substituted cobalt ferrite nanoparticles, synthesized by the sol-gel method. J Magn Magn Mater. 2014;350:19–22.CrossRefGoogle Scholar
  10. 10.
    Ati AA, Othaman Z, Samavati A. Influence of cobalt on structural and magnetic properties of nickel ferrite nanoparticles. J Mol Struct. 2013;1052:177–82.CrossRefGoogle Scholar
  11. 11.
    Niu ZP, Wang Y, Li FS. Magnetic properties of nanocrystalline Co–Ni ferrite. J Mater Sci. 2006;41:5726–30.CrossRefGoogle Scholar
  12. 12.
    Maqsood A, Khan K. Structural and microwave absorption properties of Ni(1−x)Co(x)Fe2O4 (0.0 ≤ x ≤ 0.5) nanoferrites synthesized via co-precipitation route. J Alloys Compd. 2011;509:3393–7.CrossRefGoogle Scholar
  13. 13.
    Azizi A, Yoozbashizadeh H, Yourdkhani A, Mohammadi M. Phase formation and change of magnetic properties in mechanical alloyed Ni0.5Co0.5Fe2O4 by annealing. J Magn Magn Mater. 2010;322:56–9.CrossRefGoogle Scholar
  14. 14.
    Maaz K, Khalid W, Mumtaz A, Husanain SK, Liu J, Duan LJ. Magnetic characterization of Co1−xNixFe2O4 (0 ≤ x ≤ 1) nanoparticles prepared by co-precipitation route. Phys. E. 2009;41:593–9.CrossRefGoogle Scholar
  15. 15.
    Liu B, Ding J, Yi J, Yin J. Magnetic anisotropies in cobalt-nickel ferrites (NixCo1−xFe2O4). J Korean Phys Soc. 2008;52(5):1483–6.CrossRefGoogle Scholar
  16. 16.
    Maqsood A, Khan K, Anis-ul-Rehman M, Malik MA. Structural and electrical properties of Ni–Co nanoferrites prepared by co-precipitation route. J Supercond Nov Magn. 2011;24:617–22.CrossRefGoogle Scholar
  17. 17.
    Kumar A, Sharma P, Varshney D. Structural, vibrational and dielectric study of Ni doped spinel Co ferrites: Co1−xNixFe2O4 (x = 0.0, 0.5,1.0). Ceram Int. 2014;40:12855–60.CrossRefGoogle Scholar
  18. 18.
    Mane DR, Birajdar DD, Patil S, Shirsath SE, Kadam RH. Redistribution of cations and enhancement in magnetic properties of sol-gel synthesized Cu0.7−xCoxZn0.3Fe2O4 (0 ≤ x ≤ 0.5). J Sol-Gel Sci Technol. 2011;58:70–9.CrossRefGoogle Scholar
  19. 19.
    Jadhav SS, Shirsath SE, Toksha BG, Patange SM, Shengule DR, Jadhav KM. Structural and electric properties of Zn-substituted NiFe2O4 nanoparticles prepared by co-precipitation method. Phys B Cond Matter. 2010;405:2610–4.CrossRefGoogle Scholar
  20. 20.
    Baruwati B, Rana RK, Manorama SV. Further insights in the conductivity behaviour of nanocrystalline NiFe2O4. J Appl Phys. 2007;101:014302–7.CrossRefGoogle Scholar
  21. 21.
    Yang H, Zhang X, Ao W, Qiu G. Formation of NiFe2O4 nanoparticles by mechnochemical reaction. Mater Res Bull. 2004;39:833–7.CrossRefGoogle Scholar
  22. 22.
    Li XD, Yang WS, Li F, Evans DG, Duan X. Stoichiometric synthesis of pure NiFe2O4 spinel from layered double hydroxide precursor for use as the anode material in lithium-ion batteries. J Phys Chem Solids. 2006;67:1286–90.CrossRefGoogle Scholar
  23. 23.
    Hessien MM. Synthesis and characterization of lithium ferrite by oxalate precursor route. J Magn Magn Mater. 2004;320:2800–7.CrossRefGoogle Scholar
  24. 24.
    Ai L, Jiang J. Influence of annealing temperature on the formation, microstructure and magnetic properties of spinel nanocrystalline cobalt ferrite. Curr Appl Phys. 2010;10:284–8.CrossRefGoogle Scholar
  25. 25.
    Hashim M, Kumar AS, Ali S, Koo BH, Chung H, Kumar R. Structural, magnetic and electrical properties of Al3+ substituted Ni–Zn ferrite nanoparticles. J Alloys Compd. 2012;511:107–14.CrossRefGoogle Scholar
  26. 26.
    Gonsalves LR, Verenkar VMS, Mojumdar SC. Preparation and characterization of Co0.5Zn0.5Fe2(C4H2O4)3·6N2H4 a precursor to prepare Co0.5Zn0.5Fe2O4 nanoparticles. J Therm Anal Calorim. 2009;96:53–7.CrossRefGoogle Scholar
  27. 27.
    Gonsalves LR, Mojumdar SC, Verenkar VMS. Synthesis and characterization of ultrafine spinel ferrite obtained by precursor combustion technique. J Therm Anal Calorim. 2012;108:859–63.CrossRefGoogle Scholar
  28. 28.
    Verenkar VMS, Rane KS, Sawant PY. Hydrazine method of synthesis of γ-Fe2O3 useful in ferrite preparation. Part IV- preparation and characterization of magnesium ferrite, MgFe2O4 from γ-Fe2O3 obtained from hydrazinated iron oxyhydroxides and iron(II) carboxylato-hydrazinates. J Mater Sci: Mater Electron. 1999;10:133–40.Google Scholar
  29. 29.
    Gonsalves LR, Mojumdar SC, Verenkar VMS. Synthesis of cobalt nickel ferrite nanoparticles via autocatalytic decomposition of the precursor. J Mater Sci. 2010;100:789–92.Google Scholar
  30. 30.
    Gonsalves LR, Mojumdar SC, Verenkar VMS. Synthesis and characterization of Co0.8Zn0.2Fe2O4 nanoparticles. J Therm Anal Calorim. 2011;104:869–73.CrossRefGoogle Scholar
  31. 31.
    Gawas UB, Mojumdar SC, Verenkar VMS. Ni0.5Mn0.1Zn0.4Fe2(C4H2O4)3·6N2H4 precursor and Ni0.5Mn0.1Zn0.4Fe2O4 nanoparticle. Preparation, IR spectral, XRD, SEM-EDS and thermal analysis. J Therm Anal Calorim. 2009;96(1):49–52.CrossRefGoogle Scholar
  32. 32.
    Gawas UB, Mojumdar SC, Verenkar VMS. Synthesis, characterization, infrared studies and thermal analysis of Mn0.6Zn0.4Fe2(C4H2O4)3·6N2H4 and its decomposition product Mn0.6Zn0.4Fe2O4. J Therm Anal Calorim. 2010;100(3):867–71.CrossRefGoogle Scholar
  33. 33.
    Gawas UB, Mojumdar SC, Verenkar VMS. Synthesis and characterization of Ni0.6Zn0.4Fe2O4 nano-particles obtained by autocatalytic thermal decomposition of carboxylato-hydrazine complex. J Therm Anal Calorim. 2011;104(3):879–83.CrossRefGoogle Scholar
  34. 34.
    Patil KC. Metal hydrazine complexes as precursors to oxide materials. Proc Indian Acad Sci (Chem Sci). 1986;96(6):459–64.CrossRefGoogle Scholar
  35. 35.
    Gawas SG, Verenkar VMS, Mojumdar SC. Synthesis and characterization of nickel cobalt zinc ferrous hydrazine fumarate. A single source precursor to nanocrystalline Ni0.4Co0.2Zn0.4Fe2O4. J Therm Anal Calorim. 2015;119:825–30.CrossRefGoogle Scholar
  36. 36.
    Gawas UB, Verenkar VMS. Synthesis, thermal and infrared spectroscopic studies of hydrazinated mixed metal fumarates. J Therm Anal Calorim. 2014;115(1):375–81.CrossRefGoogle Scholar
  37. 37.
    More A, Verenkar VMS, Mojumdar SC. Nickel ferrite nanoparticles synthesized from novel fumerato hydrazinate precursor. J Therm Anal Calorim. 2008;94(1):63–7.CrossRefGoogle Scholar
  38. 38.
    Gawas UB, Verenkar VMS, Patil DR. Nanostructured ferrite bases electronic nose sensitive to ammonia at room temperature. Sens Transducers. 2011;134(11):45–55.Google Scholar
  39. 39.
    Sawant SY, Kannan KR, Verenkar VMS. Synthesis, characterization and thermal analysis of nickel manganese fumarato-hydrazinate. In: Pillai CGS, Ramakumar KL, Ravindran PV, Venugopal V, editors. Proceedings of 13th National Symposium on Thermal Analysis, B.A.R.C., Mumbai. Mumbai: Indian Thermal Analysis Society; 2002. p. 154–5.Google Scholar
  40. 40.
    Mendham J, Denney RC, Barnes JD, Thomas M, Sivashankar B. Vogel’s textbook of quantitative chemical analysis (Vth edition).Google Scholar
  41. 41.
    Wilkins DH. The determination of nickel, cobalt, iron and zinc in ferrites. Anal Chim Acta. 1959;20:271–4.CrossRefGoogle Scholar
  42. 42.
    Gawas UB, Verenkar VMS. Synthesis, thermo-analytical and IR spectral studies of hydrazinated mixed metal carboxylates: a single source precursor to nanosized mixed metal oxides. Therm Acta. 2013;556:41–6.CrossRefGoogle Scholar
  43. 43.
    Gonsalves LR, Verenkar VMS. Synthesis and characterization of nanosized nickel-doped cobalt ferrite obtained by precursor combustion method. J Therm Anal Calorim. 2012;108:877–80.CrossRefGoogle Scholar
  44. 44.
    Gawas SG, Verenkar VMS. Precursor combustion synthesis of nanocrystalline cobalt substituted nickel zinc ferrites from hydrazinated mixed metal fumarates. Therm Acta. 2015;605:16–21.CrossRefGoogle Scholar
  45. 45.
    Waldron RD. Infrared spectra of ferrites. Phys Rev. 1955;99(6):1727–35.CrossRefGoogle Scholar
  46. 46.
    Evans BJ, Hafner S. Mössbauer resonance of Fe57in oxide spinels containing Cu and Fe. J Phys Chem Solids. 1968;29:1573–88.CrossRefGoogle Scholar
  47. 47.
    Mohan K, Venudhar YC. Far-infrared spectra of lithium-cobalt mixed ferrites. J Mater Sci Lett. 1999;18:13–6.CrossRefGoogle Scholar
  48. 48.
    Rahman MT, Vargas M, Ramana CV. Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J Alloys Compd. 2014;617:547–62.CrossRefGoogle Scholar
  49. 49.
    Koops CG. On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequency. Phys Rev. 1951;83:121–4.CrossRefGoogle Scholar
  50. 50.
    Gopalam EV, Malini KA, Saravanan S, Kumar DS, Yoshida Y, Anantharaman MR. Evidence for polaron conduction in nanostructured manganese ferrite. J Phys D Appl Phys. 2008;41:185005–14.CrossRefGoogle Scholar
  51. 51.
    Gul IH, Amin F, Abazi AZ, Anis-ul-Rehmann M, Maqsood A. Physical and magnetic characterization of co-precipitated nanosized Co–Ni ferrites. Scr Mater. 2007;56:497–500.CrossRefGoogle Scholar
  52. 52.
    Hashim M, Alimuddin, Kumar S, Shirsath SE, Kotnala RK, Shah J, Kumar R. Synthesis and characterization of Ni+2 substituted Cobalt ferrite nanoparticles. Mater Chem Phys. 2013;139:364–74.CrossRefGoogle Scholar
  53. 53.
    Rezlescu N, Rezlescu E. Dielectric properties of copper containing ferrites. Phys Status Solid A. 1974;23(2):575–82.CrossRefGoogle Scholar
  54. 54.
    Singh N, Agarwal A, Sanghi S, Singh P. Synthesis, microstructure, dielectric and magnetic properties of Cu substituted Ni–Li ferrites. J Magn Magn Mater. 2011;323:486–92.CrossRefGoogle Scholar
  55. 55.
    Verwey EJW. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature. 1939;144:327–8.CrossRefGoogle Scholar
  56. 56.
    Mathe VL, Kamble RB. Anomalies in electrical and dielectric properties of nanocrystalline Ni–Co spinel ferrite. Mater Res Bull. 2008;43:2160–5.CrossRefGoogle Scholar
  57. 57.
    Khan K, Maqsood A, Anis-ul-Rehman M, Malik MA, Akram M. Structural, dielectric and magnetic characterization of nanocrystalline Ni-Co ferrite. J Supercond Nov Magn. 2012;25:2707–11.CrossRefGoogle Scholar
  58. 58.
    Shobana MK, Sankar S. Synthesis and characterization of Ni1−xCoxFe2O4 nanoparticles. J Magn Magn Mater. 2009;321:3132–7.CrossRefGoogle Scholar
  59. 59.
    Topkaya R, Baykal A, Demir A. Yaffet-Kittel type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. J Nanopart Res. 2013;15:1359–76.CrossRefGoogle Scholar
  60. 60.
    Topkaya R, Akman Ö, Kazan S, Aktaş B, Durmus Z, Baykal B. Surface spin disorder and spin-glass like behaviour in manganese-substituted cobalt ferrite nanoparticles. J Nanopart Res. 2012;14:1156–71.CrossRefGoogle Scholar
  61. 61.
    Aravind G, Raghasudha M, Ravinder D. Synthesis, characterization and FC–ZFC magnetization studies of cobalt substituted lithium nano ferrites. J Magn Magn Mater. 2015;378:278–84.CrossRefGoogle Scholar
  62. 62.
    Köseoğlu Y, Baykal A, Gözüak F, Kaas H. Structural and magnetic properties of CoxZn1−xFe2O4 nanocrystals synthesized by microwave method. Polyhedron. 2009;28:2887–92.CrossRefGoogle Scholar
  63. 63.
    Vasundhara K, Achary SN, Deshpande SK, Babu PD, Meena SS, Tyagi AK. Size dependent magnetic and dielectric properties of nano CoFe2O4 prepared by a salt assisted gel-combustion method. J Appl Phys. 2013;113:194101–8.CrossRefGoogle Scholar
  64. 64.
    Peddis D, Orrù F, Ardu A, Cannas C, Musinu A, Piccaluga G. Interparticle interactions and magnetic anisotropy in cobalt ferrite nanoparticles: influence of molecular coating. Chem Mater. 2012;24:1062–71.CrossRefGoogle Scholar
  65. 65.
    Choodamani C, Nagabhushana GP, Ashoka S, Prasad BD, Rudraswamy B, Chandrappa GT. Structural and magnetic studies of Mg(1−x)Zn(x)Fe2O4 nanoparticles prepared by a solution combustion method. J Alloys Compd. 2013;578:103–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Department of ChemistryGoa UniversityTaleigao PlateauIndia

Personalised recommendations