Journal of Thermal Analysis and Calorimetry

, Volume 128, Issue 2, pp 875–882 | Cite as

Investigating thermal and kinetic parameters of lithium titanate formation by solid-state method

  • Piyush Sharma
  • Poonam Uniyal


The lithium titanate formation through solid-state reaction between lithium carbonate and titanium dioxide was investigated with the help of thermogravimetry technique, under an inert atmosphere from ambient temperature to 1273 K at five (2, 5, 10, 15 and 20 K min−1) heating rates. The kinetic mechanism involved in the reaction was proposed by employing Criado method and Zhang method. The results revealed that the three-dimensional diffusion mechanism is involved in the formation of lithium titanate. Also, the kinetic parameters were determined by using Fynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunsose (KAS) isoconversional kinetic methods. The value of activation energy and pre-exponential calculated from FWO is 214.52 kJ mol−1 and 4.96 × 10−10 min−1, whereas corresponding values calculated from KAS method are 211.27 kJ mol−1 and 6.23 × 10−9 min−1, respectively. Furthermore, thermodynamic parameters such as enthalpy, entropy and Gibb’s free energy were determined at all heating rates, in order to evaluate spontaneity of the reaction.


Solid-state reaction Thermal decomposition Kinetic mechanism Thermodynamic parameters 

Supplementary material

10973_2016_5977_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)


  1. 1.
    Sonak S, Rakesh R, Jain U, Mukherjee A, Kumar S, Krishnamurthy S. Thermogravimetric study of the kinetics of lithium titanate reduction by hydrogen. Fusion Eng Des. 2014;89:2738–42.CrossRefGoogle Scholar
  2. 2.
    Carella E, Hernandez T. Ceramics for fusion reactors: the role of the lithium orthosilicate as breeder. Phys B Condens Matter. 2012;407:4431–5.CrossRefGoogle Scholar
  3. 3.
    Hoshino T, Yasumoto M, Tsuchiya K, Hayashi K, Nishimura H, Suzuki A, Terai T. Non-stoichiometory and vaporization characteristic of Li2.1TiO3.05 in hydrogen atmosphere. Fusion Eng Des. 2007;82:2269–73.CrossRefGoogle Scholar
  4. 4.
    Alvani C, Carconi PL, Casadio S, Roux N. Effects of pre-treatments of Li2TiO3 pebbles on the release of tritium generated during short irradiations. Fusion Eng Des. 2001;58–59:701–5.CrossRefGoogle Scholar
  5. 5.
    Billone MC. Thermal and tritium transport in Li2O and Li2ZrO3. J Nucl Mater. 1996;233–237(Part 2):1462–6.CrossRefGoogle Scholar
  6. 6.
    Bertone PC, Jassby DL. Tritium recovery from lithium oxide pellets. J Nucl Mater. 1984;123:884–9.CrossRefGoogle Scholar
  7. 7.
    Deptua A, Brykaa M, Aada W, Olczak T, Sartowska B, Chmielewski AG, Wawszczak D, Alvani C. Preparation of spherical particles of Li2TiO3 (with diameters below 100 μm) by sol–gel process. Fusion Eng Des. 2009;84:681–4.CrossRefGoogle Scholar
  8. 8.
    Vittal Rao TV, Bamankar YR, Mukerjee SK, Aggarwal SK. Preparation and characterization of Li2TiO3 pebbles by internal gelation sol–gel process. J Nucl Mater. 2012;426:102–8.CrossRefGoogle Scholar
  9. 9.
    Cruz D, Pfeiffer H, Bulbulian S. Preparation and characterization of Li2TiO3 pebbles by internal gelation sol–gel process. Solid State Sci. 2006;8:470–5.CrossRefGoogle Scholar
  10. 10.
    Yu CL, Yanagisawa K, Kamiya S, Kozawa T, Ueda T. Preparation and characterization of Li2TiO3 pebbles by internal gelation sol–gel process. Ceram Int. 2014;40:1901–8.CrossRefGoogle Scholar
  11. 11.
    Jung CH, Park JY, Kim WJ, Ryu WS, Lee SJ. Characterizations of Li2TiO3 prepared by a solution combustion synthesis and fabrication of spherical particles by dry-rolling granulation process. Fusion Eng Des. 2006;81:1039–44.CrossRefGoogle Scholar
  12. 12.
    Mandal D, Shenoi MRK, Ghosh SK. Synthesis & fabrication of lithium-titanate pebbles for ITER breeding blanket by solid state reaction & spherodization. Fusion Eng Des. 2010;85:819–23.CrossRefGoogle Scholar
  13. 13.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polym Degrad Stab. 2010;95:733–9.CrossRefGoogle Scholar
  14. 14.
    Sádovská G, Honcová P, Sádovský Z. Kinetics and enthalpy of crystallization of uric acid dehydrate. Thermochim Acta. 2013;566:211–3.CrossRefGoogle Scholar
  15. 15.
    Kourková L, Sádovská G. Heat capacity, enthalpy and entropy of Li2CO3 at 303.15–563.15 K. Thermochim Acta. 2007;452:80–1.CrossRefGoogle Scholar
  16. 16.
    Sádovská G, Wolf G. Enthalpy of dissolution and thermal dehydration of calcium oxalate hydrates. J Therm Anal Calorim. 2014;119:2063–8.CrossRefGoogle Scholar
  17. 17.
    Goel N, Singh UP. Syntheses, structural, computational, and thermal analysis of acid-base complexes of picric acid with N-heterocyclic bases. J Phys Chem A. 2013;117:10428–37.CrossRefGoogle Scholar
  18. 18.
    He Y, Liao S, Chen Z, Li Y, Xia Y, Wu W, Li B. Nonisothermal kinetics study with isoconversional procedure and DAEM: LiCoPO4 synthesized from thermal decomposition of the precursor. Ind Eng Chem Res. 2013;52:1870–6.CrossRefGoogle Scholar
  19. 19.
    Ullah A, Iqbal Y, Mohmood T, Mahmood A, Naeem A, Hamayun M. Kinetic analysis on the synthesis of Mg0.95Zn0.05TiO3 microwave dielectric ceramic by polymeric precursor method. Ceramic Int. 2015;41:15089–96.CrossRefGoogle Scholar
  20. 20.
    Sonak S, Jain U, Sahu AK, Kumar S, Krishnamurthy N. Thermogravimetric analysis and kinetic study of formation of lithium titanate by solid state route. J Nucl Mater. 2015;457:88–93.CrossRefGoogle Scholar
  21. 21.
    Flynn J, Wall L. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Pol Lett. 1966;4:323–8.CrossRefGoogle Scholar
  22. 22.
    Ozawa T. A new method of analysing thermogravimetric data. B Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  23. 23.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702.CrossRefGoogle Scholar
  24. 24.
    Akahira T, Sunose T. Joint convention of four electrical institutes. Res Rep Chiba Inst Technol. 1971;16:22.Google Scholar
  25. 25.
    Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  26. 26.
    Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.CrossRefGoogle Scholar
  27. 27.
    Quan C, Li A, Gao N. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Manage. 2009;29:2353–60.CrossRefGoogle Scholar
  28. 28.
    Núñez L, Fraga F, Núñez MR, Villanueva M. Thermogravimetric study of the decomposition process of the system BADGE (n = 0)/1,2 DCH. Polymer. 2000;41:4635–41.CrossRefGoogle Scholar
  29. 29.
    Criado JM, Málek J. A. Ortega. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147:377–85.CrossRefGoogle Scholar
  30. 30.
    Pérez-Maqueda LA, Criado JM. The accuracy of Senum and Yang’s approximations to the Arrhenius integral. J Therm Anal Calorim. 2000;60:909–15.CrossRefGoogle Scholar
  31. 31.
    Zhang JJ, Ren N, Bai JH, Xu SL. Synthesis and thermal decomposition reaction kinetics of complexes of [Sm2(m-CIBA)6(phen)2].2H2O and [Sm2(m-BrBA)6(phen)2].2H2O. Int J Chem Kinet. 2007;39:67–74.CrossRefGoogle Scholar
  32. 32.
    Zhang JJ, Ren N. A new kinetic method of processing TA data. Chin J Chem. 2004;22:1459–62.CrossRefGoogle Scholar
  33. 33.
    Olszak-Humienik M, Mozejko J. Thermodynamic functions of activated complexes created in thermal decomposition processes of sulphates. Thermochim Acta. 2000;344:73–9.CrossRefGoogle Scholar
  34. 34.
    Young D. Decomposition of solids. Oxford: Pergamon Press; 1966.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Smart Materials LaboratoryThapar UniversityPatialaIndia

Personalised recommendations