Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 1, pp 449–455 | Cite as

Experimental study of phase transformation in non-equilibrium hypoeutectic alloy from the Fe–Cr–Ni–Mo–C system

  • K. Wieczerzak
  • P. Bała
  • G. Cios
  • T. Tokarski
  • K. Górecki
  • Ł. Frocisz
Article

Abstract

In the present study, experimental and thermodynamic analysis of phase transformation in hypoeutectic Fe–24Cr–11Ni–4Mo–0.64C alloy is presented. The investigated alloy was synthesized in an arc furnace in high-purity argon atmosphere using suction-casting unit. Chemical composition of the alloy was determined using an optical emission spectrometer. The microstructure was characterized by scanning electron microscopy. Phase composition in as-cast state was analysed by X-ray diffraction and compared with thermodynamic calculations for equilibrium state using Thermo-Calc software. The analysis of phase transformations was conducted by dilatometry and differential scanning calorimetry investigations. It was found that phase composition of the alloy after non-equilibrium solidification (cooling rate ~30 °C s−1) differs significantly from equilibrium state. Critical temperatures of phase transformations in the alloy were determined.

Keywords

Fe–Cr–Ni–Mo–C Phase transformation Dilatometry DSC Eutectic carbides 

References

  1. 1.
    Plaut R, Herrera C, Escriba D. A short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance. Mater Res. 2007;. doi:10.1590/S1516-14392007000400021.Google Scholar
  2. 2.
    Totten GE. Steel heat treatment, metallurgy and technologies. Boca Raton: Taylor & Francis Group; 2007.Google Scholar
  3. 3.
    Venkatraman M, Neumann JP. The C–Cr (carbon-chromium) system. Bull Alloy Phase Diagr. 1990;. doi:10.1007/BF02841701.Google Scholar
  4. 4.
    Goldschmidt HJ. Interstitial alloys. New York: Springer; 1967.CrossRefGoogle Scholar
  5. 5.
    Sohar CR, Betzwar-Kotas A, Gierl C, Weiss B, Danninger H. Gigacycle fatigue behavior of a high chromium alloyed cold work tool steel. Int J Fatigue. 2008;. doi:10.1016/j.ijfatigue.2007.09.012.Google Scholar
  6. 6.
    Doğan ÖN, Hawk JA, Laird G. Solidification structure and abrasion resistance of high chromium white irons. Metall Mater Trans A. 1997;. doi:10.1007/s11661-997-0267-3.Google Scholar
  7. 7.
    Svensson L-E, Gretoft B, Ulander B, Bhadeshia HKDH. Fe–Cr–C hardfacing alloys for high-temperature applications. J Mater Sci. 1986;21:1015–9.CrossRefGoogle Scholar
  8. 8.
    Fan C, Chen MC, Chang CM, Wu W. Microstructure change caused by (Cr, Fe)23C6 carbides in high chromium Fe–Cr–C hardfacing alloys. Surf Coat Technol. 2006;. doi:10.1016/j.surfcoat.2006.01.010.Google Scholar
  9. 9.
    Kopyciński D, Kawalec M, Szczęsny A, Gilewski R, Piasny S. Analysis of the structure and abrasive wear resistance of white cast iron with precipitates of carbides. Arch Metall Mater. 2013;. doi:10.2478/amm-2013-0113.Google Scholar
  10. 10.
    Yang Z, Lang Y, Liu Z, Chen H, Liang J. The benefit of molybdenum in stainless steel. In: International seminar applications of Mo steels June 27th–28th, 2010:27–45.Google Scholar
  11. 11.
    Tabrett CP, Sare IR, Ghomashchi MR. Microstructure-property relationships in high chromium white iron alloys. Int Mater Rev. 1996;. doi:10.1179/095066096790326075.Google Scholar
  12. 12.
    Imurai S, Thanachayanont C, Pearce JTH, Chairuangsri T. Microstructure and erosion-corrosion behaviour of as-cast high chromium white irons containing molybdenum in aqueous sulfuric-acid slurry. Arch Metall Mater. 2015;. doi:10.1515/amm-2015-0230.Google Scholar
  13. 13.
    Palcut M, Vach M, Cicka R, Janovec J. Compositional changes in carbide M7C3 upon annealing. Arch Metall Mater. 2008;53:1157–64.Google Scholar
  14. 14.
    Gulyaev AP. Carbide transformations in alloy steels. Metal Sci Heat Treat Met 1959;1(11):53–60.CrossRefGoogle Scholar
  15. 15.
    Wieczerzak K, Bala P, Stepien M, Cios G, Koziel T. Microstructural aspects of cast Fe–Cr–Mo–C alloy. In: Met. 2015, June 3rd–5th, Brno, 2015; 1–6.Google Scholar
  16. 16.
    Lo KH, Shek CH, Lai JKL. Recent developments in stainless steels. Mater Sci Eng R Rep. 2009;. doi:10.1016/j.mser.2009.03.001.Google Scholar
  17. 17.
    Padilha AF, Rios PR. Decomposition of austenite in austenitic stainless steels. ISIJ Int. 2002;. doi:10.2355/isijinternational.42.325.Google Scholar
  18. 18.
    Bechtoldt CJ, Vacher HC. Phase-diagram study of alloys in the iron-chromium-molybdenum-nickel system. J Res Natl Bur Stand. 1957;. doi:10.6028/jres.058.002.Google Scholar
  19. 19.
    Kim SJ, Lee TH. Precipitation sequences in austenitic Fe–22Cr–21Ni–6Mo–(N) stainless steels. Mater Sci Forum. 1999;. doi:10.4028/www.scientific.net/MSF.318-320.109.Google Scholar
  20. 20.
    Stoter LP. Thermal ageing effects in AISI type 316 stainless steel. J Mater Sci. 1981;. doi:10.1007/BF00542750.Google Scholar
  21. 21.
    Liu S, Hamaguchi Y, Kuwano H. Intermetallic compounds and their formation reactions in system Fe–Cr–Mo at high-temperatures. Acta Metall Sin (Engl Lett). 1989;2:321–8.Google Scholar
  22. 22.
    Filho AI, Cardoso WS, Gontijo LC, Silva RV, Casteletti LC. Austenitic–ferritic stainless steel containing niobium. Metall Mater. 2013;66:467–71.Google Scholar
  23. 23.
    Nilsson JO. Super duplex stainless steels. Mater Sci Technol. 1992;. doi:10.1179/mst.1992.8.8.685.Google Scholar
  24. 24.
    Kim SH, Kim H, Kim NJ. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature. 2015;. doi:10.1038/nature14144.Google Scholar
  25. 25.
    Kosec L, Šavli Š, Kožuh S, Holjevac Grgurić T, Nagode A, Kosec G, et al. Transformation of austenite during isothermal annealing at 600–900 C for heat-resistant stainless steel. J Alloys Compd. 2013;. doi:10.1016/j.jallcom.2013.03.102.Google Scholar
  26. 26.
    Weiss B, Stickler R. Phase instabilities during high temperature exposure of 316 austenitic stainless steel. Metall Trans. 1972;. doi:10.1007/BF02647659.Google Scholar
  27. 27.
    Kozieł T. Estimation of cooling rates in suction casting and copper-mould casting processes. Arch Metall Mater. 2015;. doi:10.1515/amm-2015-0204.Google Scholar
  28. 28.
    Durand-Charre M. Microstructure of steels and cast irons. Berlin: Springer; 2003.Google Scholar
  29. 29.
    Seiser B, Drautz R, Pettifor DG. TCP phase predictions in Ni-based superalloys: structure maps revisited. Acta Mater. 2011;. doi:10.1016/j.actamat.2010.10.013.Google Scholar
  30. 30.
    Inoue A, Masumoto T. Carbide reactions (M3C–M7C3–M23C6–M6C) during tempering of rapidly solidified high carbon Cr–W and Cr–Mo steels. Metall Trans A. 1980;. doi:10.1007/BF02661203.Google Scholar
  31. 31.
    Diószegi A, Diaconu VL, Fourlakidis V. Prediction of volume fraction of primary austenite at solidification of lamellar graphite cast iron using thermal analyses. J Therm Anal Calorim. 2016;. doi:10.1007/s10973-015-5158-z.Google Scholar
  32. 32.
    Guerra-Fuentes L, Deaquino Lara R, Hernandez-Rodriguez MAL, Salinas-Rodriguez A. Garcia-Sanchez1 E. Thermal stability and phase transformations of a FV535 steel. J Therm Anal Calorim. 2016;. doi:10.1007/s10973-015-4948-7.Google Scholar
  33. 33.
    Klančnik G, Medved J, Nagode A, Novak G, Steiner Petrovič D. Influence of Mn on the solidification of Fe–Si–Al alloy for non-oriented electrical steel. J Therm Anal Calorim. 2014;. doi:10.1007/s10973-013-3536-y.Google Scholar
  34. 34.
    Maehara Y, Fujino N, Kunitake T. Effects of plastic deformation and thermal history on σ phase precipitation in duplex phase stainless steels. Trans Iron Steel Inst Japan. 1983;. doi:10.2355/isijinternational1966.23.247.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • K. Wieczerzak
    • 1
  • P. Bała
    • 1
    • 2
  • G. Cios
    • 2
  • T. Tokarski
    • 2
  • K. Górecki
    • 1
  • Ł. Frocisz
    • 1
  1. 1.Faculty of Metals Engineering and Industrial Computer ScienceAGH University of Science and TechnologyKrakówPoland
  2. 2.Academic Centre for Materials and NanotechnologyAGH University of Science and TechnologyKrakówPoland

Personalised recommendations