Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 1, pp 123–128 | Cite as

Liquidus and solidus temperatures and latent heats of melting of steels

  • Aleš KalupEmail author
  • Bedřich Smetana
  • Monika Kawuloková
  • Simona Zlá
  • Hana Francová
  • Petr Dostál
  • Kateřina Waloszková
  • Lenka Waloszková
  • Jana Dobrovská
Article

Abstract

The paper deals with the study of latent heats of melting of three real steels (one low-alloyed steel and two chromium steels) and temperatures of liquidus, peritectic transformation and solidus of these steels. All quantities were obtained using the differential scanning calorimetry method (DSC). The Setaram MHTC (multi-high-temperature calorimeter) Line 96 device equipped with 3D DSC sensor was used for all experiments. Measurements were done in alumina crucibles under inert atmosphere of pure argon. Controlled heating and cooling of steel samples was conducted at the rate of 5 K min−1. All investigated quantities were also calculated using the Thermo-Calc software package with the use of the Thermo-Calc Fe-based alloys (TCFE) database. Comparison and discussion of experimental and calculated data was performed, and very good agreement was observed. The largest difference between measured and calculated values was 18 J g−1 for latent heat of melting and up to 2 °C for all investigated temperatures of phase transformation, except for one temperature of peritectic transformation.

Keywords

Latent heat of melting DSC Thermo-Calc Steel Temperature of liquidus Temperature of solidus 

Notes

Acknowledgements

This paper was created by the Faculty of Metallurgy and Materials Engineering in the Project No. LO1203 “Regional Materials Science and Technology Centre—Feasibility Program” funded by Ministry of Education, Youth and Sports of the Czech Republic, TAČR projects Nos. TA03011277 and TA04010035 and two student projects SP2016/90 and SP2016/103.

References

  1. 1.
    Žaludová M, Smetana B, Zlá S, Dobrovská J, Vodárek V, Konečná K, Matějka V, Matějková P. Experimental study of Fe–C–O based system above 1,000 °C. J Therm Anal Calorim. 2013;112:465–71.CrossRefGoogle Scholar
  2. 2.
    Žaludová M, Smetana B, Zlá S, Dobrovská J, Watson A, Vontorová J, Rosypalová S, Kukutschová J, Cagala M. Experimental study of Fe–C–O based system below 1000 °C. J Therm Anal Calorim. 2013;111:1203–10.CrossRefGoogle Scholar
  3. 3.
    Stein F, He C, Prymak O, Voß S, Wossack I. Phase equilibria in the Fe–Al–Nb system: solidification behaviour, liquidus surface and isothermal sections. Intermetallics. 2015;59:43–58.CrossRefGoogle Scholar
  4. 4.
    Carlson KD, Beckermann C. Determination of solid fraction–temperature relation and latent heat using full scale casting experiments: application to corrosion resistant steels and nickel based alloys. Int J Cast Met Res. 2012;25:75–92.CrossRefGoogle Scholar
  5. 5.
    Michalek K, Gryc K, Tkadlečková M, Bocek D. Model Study of tundish steel intermixing and operational verification. Arch Metall Mater. 2012;57:291–6.Google Scholar
  6. 6.
    Smetana B, Zlá S, Žaludová M, Dobrovská J, Kozelský P. Application of high temperature DTA to micro-alloyed steels. Metalurgija. 2012;51:121–4.Google Scholar
  7. 7.
    Tkadlečková M, Machovcak P, Gryc K, Klus P, Michalek K, Socha L, Kovac M. Setting a numerical simulation of filling and solidification of heavy steel ingots based on real casting conditions. Mater Tehnol. 2012;46:399–402.Google Scholar
  8. 8.
    Gallagher PK. Handbook of thermal analysis and calorimetry: principles and practice. Oxford: Elsevier; 2003.Google Scholar
  9. 9.
    Wielgosz E, Kargul T. Differential scanning calorimetry study of peritectic steel grades. J Therm Anal Calorim. 2015;119:1547–53.CrossRefGoogle Scholar
  10. 10.
    Khvan AV, Fartushna IV, Mardani M, Dinsdale AT, Cheverikin VV. An experimental investigation of the liquidus projection in the Fe–Ce–C system. J Alloys Compd. 2015;651:350–6.CrossRefGoogle Scholar
  11. 11.
    Behera M, Raju S, Mythili R, Saroja S. Study of kinetics of α ⇔ β phase transformation in Ti–4.4 mass% Ta–1.9 mass% Nb alloy using differential scanning calorimetry. J Therm Anal Calorim. 2016;124:1217–28.CrossRefGoogle Scholar
  12. 12.
    Kövér M, Behúlová M, Drienovský M, Motyčka P. Determination of the specific heat using laser flash apparatus. J Therm Anal Calorim. 2015;122:151–6.CrossRefGoogle Scholar
  13. 13.
    Souza Filho IR, Sandim MJR, Cohen R, Nagamine LCCM, Hoffmann J, Bolmaro RE, Sandim HRZ. Effects of strain-induced martensite and its reversion on the magnetic properties of AISI 201 austenitic stainless steel. J Magn Magn Mater. 2016;419:156–65.CrossRefGoogle Scholar
  14. 14.
    Smetana B, Žaludová M, Tkadlečková M, Dobrovská J, Zlá S, Gryc K, Klus P, Michalek K, Machovčák P, Řeháčková L. Experimental verification of hematite ingot mould heat capacity and its direct utilisation in simulation of casting process. J Therm Anal Calorim. 2013;112:473–80.CrossRefGoogle Scholar
  15. 15.
    Gryc K, Stránský K, Michalek K, Winkler Z, Morávka J, Tkadlečková M, Socha L, Bažan J, Dobrovská J, Zlá S. A study of the high-temperature interaction between synthetic slags and steel. Mater Tehnol. 2012;46:291–6.Google Scholar
  16. 16.
    Guerra-Fuentes L, Deaquino Lara R, Hernandez-Rodriguez MAL, Salinas-Rodriguez A, Garcia-Sanchez E. Thermal stability and phase transformations of a FV535 steel. J Therm Anal Calorim. 2016;123:27–33.CrossRefGoogle Scholar
  17. 17.
    Gregolin JAR, Alcantara NG. Solidification and phase equilibria in the Fe–C–Cr–NbC system. Metall Trans A. 1991;22A:2181–6.CrossRefGoogle Scholar
  18. 18.
    Raghavan V. C–Cr–Fe–N (carbon–chromium–iron–nitrogen). J Phase Equilib. 1992;13:119–29.CrossRefGoogle Scholar
  19. 19.
    Ławrynowicz Z. Transition from upper to lower bainite in Fe–C–Cr steel. Mater Sci Technol. 2004;20:1447–54.CrossRefGoogle Scholar
  20. 20.
    Yaso M, Morito S, Ohba T, Kubota K. Microstructure of martensite in Fe–C–Cr steel. Mater Sci Eng A. 2008;481–482:770–3.CrossRefGoogle Scholar
  21. 21.
    Hou Z, Hedström P, Xu Y, Di W, Odqvist J. Microstructure of martensite in Fe–C–Cr and its implications for modelling of carbide precipitation during tempering. ISIJ Int. 2014;54:2649–56.CrossRefGoogle Scholar
  22. 22.
    Grünbaum G, Callmer B, Hammar Ö, Havola P, Hellner L, Malm S, Morsing L, Nilsson Å. A Guide to the solidification of steels. Stockholm: Jenkortoret; 1977.Google Scholar
  23. 23.
    Gale WF, Totemeier TC. Smithells metals reference book. Oxford: Butterworth-Heinemann; 2003.Google Scholar
  24. 24.
    Wen Y, Zhu Z, Zhu R, Shao G. Size effects on the melting of nickel nanowires: a molecular dynamics study. Phys E. 2004;25:47–54.CrossRefGoogle Scholar
  25. 25.
    Zlá S, Dobrovská J, Smetana B, Žaludová M, Vodárek V, Konečná K. Thermophysical and structural study of IN 792-5A nickel based superalloy. Metalurgija. 2012;51:83–6.Google Scholar
  26. 26.
    Andersson JO, Helander T, Höglund L, Shi PF, Sundman B. THERMO-CALC & DICTRA, computational tools for materials science. Calphad. 2002;26:273–312.CrossRefGoogle Scholar
  27. 27.
    Thermo-Calc Software TCFE8 Steels/Fe-alloys database version 8. Accessed 23 July 2016.Google Scholar
  28. 28.
    Lindemann A, Al-Karawi J, Schmidt J. Thermal analytical study of steels at high temperature including the range of melting. Thermochim Acta. 1998;310:133–40.CrossRefGoogle Scholar
  29. 29.
    Smetana B, Žaludová M, Zlá S, Matějka V, Dobrovská J, Gryc K, Tkadlečková M, Sikora V, Kozelský P, Cagala M. Latent heats of phase transformations of Fe-C based metallic systems in high temperature region. METAL. 2011:857–863 http://metal2013.tanger.cz/files/proceedings/metal_11/lists/papers/857.pdf.
  30. 30.
    Miettinen J. Calculation of solidification-related thermophysical properties for steels. Metall Mater Trans B. 1997;28:281–97.CrossRefGoogle Scholar
  31. 31.
    Dhindaw BK, Antonsson T, Tinoco J, Fredriksson H. Metall Mater Trans A. 2004;35A:2869–79.CrossRefGoogle Scholar
  32. 32.
    Nassar H, Korojy B, Fredriksson H. A study of shell growth irregularities in continuously cast 310S stainless steel. Ironmak Steelmak. 2009;36:521–8.CrossRefGoogle Scholar
  33. 33.
    Wang X, Wang X, Wang B, Wang B, Liu Q. Differential calculation model for liquidus temperature of steel. Steel Res Int. 2011;82:164–8.CrossRefGoogle Scholar
  34. 34.
    González-Flores MG, García-Hinojosa JA. Thermal analysis and macrostructure of Fe–Si Alloys. Int J Sci Res Sci Technol. 2016;2:224–30.Google Scholar
  35. 35.
    Lan P, Zhang J. Thermophysical properties and solidification defects of Fe–22Mn–0.7C TWIP Steel. Steel Res Int. 2016;87:250–61.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Aleš Kalup
    • 1
    Email author
  • Bedřich Smetana
    • 1
    • 2
  • Monika Kawuloková
    • 1
    • 2
  • Simona Zlá
    • 1
    • 2
  • Hana Francová
    • 1
  • Petr Dostál
    • 1
  • Kateřina Waloszková
    • 1
  • Lenka Waloszková
    • 1
  • Jana Dobrovská
    • 1
    • 2
  1. 1.Department of Physical Chemistry and Theory of Technological Processes, Faculty of Metallurgy and Materials EngineeringVŠB-Technical University of OstravaOstrava-PorubaCzech Republic
  2. 2.Regional Materials Science and Technology Centre, Faculty of Metallurgy and Materials EngineeringVŠB-Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations