Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 1, pp 871–880 | Cite as

Magnesium aluminium silicate–gentamicin complex for drug delivery systems

Preparation, physicochemical characterisation and release profiles of the drug
  • A. Rapacz-KmitaEmail author
  • E. Stodolak-Zych
  • M. Dudek
  • M. Gajek
  • M. Ziąbka
Article

Abstract

This paper presents the characteristics of magnesium aluminium silicate–gentamicin complexes for drug delivery systems. The work describes the results of studies on the successful introduction of gentamicin (an aminoglycoside antibiotic) into the interlayers of smectite clay and examines the possible use of intercalated smectite as a carrier for sustained drug release. Characterisation of magnesium aluminium silicate–gentamicin complexes was carried out by means of X-ray diffraction, Fourier transform infrared spectroscopy, thermal analysis and scanning electron microscopy with EDX analysis. The possibility of using the gentamicin intercalated smectite as a carrier for sustained release of the drug was investigated during in vitro study, in which the release rate of gentamicin from the smectite clay matrix was monitored based on absorption at 330 nm using a UV–Vis spectrometer and the kinetic of drug release was evaluated based on the zero-order, first-order, Higuchi and Korsmeyer–Peppas models. The results confirmed the efficiency of intercalation and indicate the potential for introducing gentamicin into the interlayer space of montmorillonite. Accordingly, the obtained material may thus be used as a drug carrier in modulated drug delivery systems.

Keywords

Clays Gentamicin Drug release Intercalation Biomedical applications 

Notes

Acknowledgements

This study was performed within the framework of funding for statutory activities of AGH University of Science and Technology in Cracow, Faculty of Materials Science and Ceramics (11.11.160.617).

References

  1. 1.
    Aguzzi C, Cerezo P, Viseras C, Caramella C. Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci. 2007;36:22–36.CrossRefGoogle Scholar
  2. 2.
    Chakraborti M, Jackson JK, Plackett D, Gilchrist SE, Burt HM. The application of layered double hydroxide clay (LDH)-poly(lactide-co-glycolic acid) (PLGA) film composites for the controlled release of antibiotics. J Mater Sci Mater Med. 2012;23:1705–13.CrossRefGoogle Scholar
  3. 3.
    Mostafavi A, Emami J, Varshosaz J, Davies NM, Rezazadeh M. Development of a prolonged-release gastroretentive tablet formulation of ciprofloxacin hydrochloride: pharmacokinetic characterization in healthy human volunteers. Int J Pharmacol. 2011;409:128–36.CrossRefGoogle Scholar
  4. 4.
    de Sousa Rodrigues LA, Figueiras A, Veiga F, Mendes de Freitas R, Nunes LCC, da Silva Cavalcanti, Filho E, da Silva Leite CM. The systems containing clays and clay minerals from modified drug release: a review. Colloids Surf B Biointerfaces. 2013;103:642–51.CrossRefGoogle Scholar
  5. 5.
    Takahashi T, Yamada Y, Kataoka K, Nagasaki Y. Preparation of novel PEG-clay hybrid as a DDS material: dispersion stability and sustained release profiles. J Control Release. 2005;107:408–16.CrossRefGoogle Scholar
  6. 6.
    Zheng JP, Luan HY, Xi LF, Yao KD. Study on ibuprofen/montmorillonite intercalation composites as drug release system. Appl Clay Sci. 2007;36:297–301.CrossRefGoogle Scholar
  7. 7.
    Joshi GV, Patel HA, Kevadiya BD, Bajaj HC. Montmorillonite intercalated with vitamin B1 as drug carrier. Appl Clay Sci. 2009;45:248–53.CrossRefGoogle Scholar
  8. 8.
    Pongjanyakul T, Khunawattanakul W, Puttipipatkhachorn S. Physicochemical characterizations and release studies of nicotine–magnesium aluminum silicate complex. Appl Clay Sci. 2009;44:242–50.CrossRefGoogle Scholar
  9. 9.
    Kevadiya BD, Joshi GV, Mody HM, Bajaj HC. Biopolymer-clay hydrogel composites as drug carrier: host–guest intercalation and in vitro release study of lidocaine hydrochloride. Appl Clay Sci. 2011;52:364–7.CrossRefGoogle Scholar
  10. 10.
    López-Galindo A, Viseras C, Cerezo P. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetics products. Appl Clay Sci. 2007;36:51–63.CrossRefGoogle Scholar
  11. 11.
    Konta J. Clay and man: clay raw materials in the service of man. Appl Clay Sci. 1995;10:275–335.CrossRefGoogle Scholar
  12. 12.
    Gridi-Bennadji F, Lecomte-Nana GL, Bonnet J-P, Rossignol S. Rheological properties of montmorillonitic clay suspensions: effect of firing and interlayer cations. J Eur Ceram Soc. 2012;32:2809–17.CrossRefGoogle Scholar
  13. 13.
    Czimerova A, Jankovic L, Bujdak J. Effect of the exchangeable cations on the spectral properties of methylene blue in clay dispersions. J Colloids Interface Sci. 2004;274:126–32.CrossRefGoogle Scholar
  14. 14.
    Mishra RK, Ramasamy K, Lim SM, Ismail MF, Majeed ABA. Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films. J Mater Sci Mater Med. 2014;25:1925–39.CrossRefGoogle Scholar
  15. 15.
    Lin FH, Lee YH, Jian CH, Wong JM, Shieh MJ, Wang CY. A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier. Biomaterials. 2002;23:1981–7.CrossRefGoogle Scholar
  16. 16.
    Choy JH, Choi SJ, Oh JM, Park T. Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci. 2007;36:122–32.CrossRefGoogle Scholar
  17. 17.
    Tamayo A, Kyziol-Komosinska J, Sánchez MJ, Calejas P, Rubio J, Barba MF. Characterization and properties of treated smectites. J Eur Ceram Soc. 2012;32:2831–41.CrossRefGoogle Scholar
  18. 18.
    Rapacz-Kmita A, Stodolak-Zych E, Ziabka M, Rozycka A, Dudek M. Instrumental characterization of the smectite clay–gentamicin hybrids. Bull Mater Sci. 2015;38:1069–78.CrossRefGoogle Scholar
  19. 19.
    Yu M, Zhou K, Zhang F, Zhang D. Porous HA microspheres as drug delivery: effects of porosity and pore structure on drug loading and in vitro release. Ceram Int. 2014;40:12617–21.CrossRefGoogle Scholar
  20. 20.
    United States Pharmacopeial Convention. Content of gentamicin sulfate. Rockville, MD: United States Pharmacopeial Convention; 2011.Google Scholar
  21. 21.
    Clinical guideline for gentamicin prescribing and therapeutic drug monitoring. Royal Cornwall Hospitals NHS; 2014.Google Scholar
  22. 22.
    Hadjiioannou TP, Christian GD, Koupparis MA, Macheras PE. Quantitative calculations in pharmaceutical practice and research. New York: VCH Publishers Inc.; 1993.Google Scholar
  23. 23.
    Libo Y, Reza F. Zero-order release kinetics from a self-correcting floatable asymmetric configuration drug delivery system. J Pharm Sci. 1996;85:129–248.CrossRefGoogle Scholar
  24. 24.
    Gibaldi M, Feldman S. Establishment of sink conditions in dissolution rate determinations. Theoretical considerations and application to nondisintegrating dosage forms. J Pharm Sci. 1967;56:1238–42.CrossRefGoogle Scholar
  25. 25.
    Wagner JG. Interpretation of percent dissolved-time plots derived from in vitro testing of conventional tables and capsules. J Pharm Sci. 1969;58:1253–7.CrossRefGoogle Scholar
  26. 26.
    Higuchi WI. Diffusional models useful in biopharmaceutics drug release rate processes. J Pharm Sci. 1967;56:315–24.CrossRefGoogle Scholar
  27. 27.
    Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9.CrossRefGoogle Scholar
  28. 28.
    Kim H, Fassihi R. Application of binary polimer system in drug release rate modulation 2. Influence of formulation variables and hydrodynamic conditions on release kinetics. J Pharm Sci. 1997;86:323–8.CrossRefGoogle Scholar
  29. 29.
    Korsmeyer RW, Guray R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.CrossRefGoogle Scholar
  30. 30.
    Raussell-Colom JA, Serratosa JM. Reactions of clays with organic substances. In: Newman ACD, editor. Chemistry of clays and clay minerals. Mineralogical society monograph, vol. 6. Essex: Longman Scientific and Technical; 1987. p. 371–422.Google Scholar
  31. 31.
    Parolo ME, Savini MC, Vallés JM, Baschini MT, Avena MJ. Tetracycline adsorption on montmorillonite: pH and ionic strength effects. Appl Clay Sci. 2008;40:179–86.CrossRefGoogle Scholar
  32. 32.
    Darder M, Colilla M, Ruiz-Hitzky E. Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chem Mater. 2003;15:3774–80.CrossRefGoogle Scholar
  33. 33.
    Pongjanyakul T, Priprem A, Puttipipatkhachorn S. Investigation of novel alginate-magnesium aluminum silicate microcomposite films for modified-release tablets. J Control Release. 2005;107:343–56.CrossRefGoogle Scholar
  34. 34.
    Legaly G, Dekany I. Adsorption on hydrophobized surfaces: clusters and self-organization. Adv Colloids Interface Sci. 2005;114–115:189–204.CrossRefGoogle Scholar
  35. 35.
    Bailey SW, editor. Hydrous phyllosilicates (exclusive of micas). Reviews in mineralogy, vol. 19. Washington, DC: Mineralogical Society of America; 1988.Google Scholar
  36. 36.
    Lepoittevin B, Devalckenaere M, Pantoustier N, Alexandre M, Kubies D, Calberg C, Jérôme R, Dubois P. Poly(ɛ-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties. Polymer. 2002;43:4017–23.CrossRefGoogle Scholar
  37. 37.
    Kiersnowski A, Dabrowski P, Budde H, Kressler J, Piglowski J. Synthesis and structure of poly(ɛ-caprolactone)/synthetic montmorillonite nano-intercalates. Eur Polymer J. 2004;40:2591–8.CrossRefGoogle Scholar
  38. 38.
    Katti KS, Sikdar D, Katti DR, Ghosh P, Verma D. Molecular interactions in intercalated organically modified clay and clay-polycaprolactam nanocomposites: experiments and modelling. Polymer. 2006;47:403–14.CrossRefGoogle Scholar
  39. 39.
    Doadrio AL, Sousa EMB, Doadrio JC, Perez Pariente J, Izquierdo-Barba I, Vallet-Regi M. Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. J Control Release. 2004;97:125–32.CrossRefGoogle Scholar
  40. 40.
    Baia M, Astilean S, Iliescu T. Raman and SERS investigations of pharmaceuticals. Berlin: Springer; 2008.CrossRefGoogle Scholar
  41. 41.
    Leopold N, Cîntă-Pînzaru S, Baia M, Antonescu E, Cozar O, Kiefer W, Popp J. Raman and surface—enhanced Raman study of thiamine at different pH values. Vib Spectrosc. 2005;39:169–76.CrossRefGoogle Scholar
  42. 42.
    Patel HA, Bajaj HC, Jasra RV. Synthesis of Pd and Rh metal nanoparticles in the interlayer space of organically modified montmorillonite. J Nanopart Res. 2008;10:625–32.CrossRefGoogle Scholar
  43. 43.
    Viscarra Rossel RA, Lark RM. Improved analysis and modelling of soil diffuse reflectance spectra using wavelets. Eur J Soil Sci. 2009;60:453–64.CrossRefGoogle Scholar
  44. 44.
    Amarasinghe PM, Katti KS, Katti DR. Molecular hydraulic properties of montmorillonite: a polarized Fourier transform infrared spectroscopic study. Appl Spectrosc. 2008;62:1303–13.CrossRefGoogle Scholar
  45. 45.
    Amarasinghe PM, Katti KS, Katti DR. Nature of organic fluid–montmorillonite interactions: an FTIR spectroscopic study. J Colloids Interface Sci. 2009;337:97–105.CrossRefGoogle Scholar
  46. 46.
    Joshi GV, Kevadiya BD, Patel HA, Bajaj HC, Jasra RV. Montmorillonite as drug delivery system: intercalation and in vitro release of timolol maleate. Int J Pharm. 2009;374:53–7.CrossRefGoogle Scholar
  47. 47.
    Patel HA, Somani RS, Bajaj HC, Jasra RV. Preparation and characterization of phosphonium montmorillonite with enhanced thermal stability. Appl Clay Sci. 2007;35:194–200.CrossRefGoogle Scholar
  48. 48.
    Ambre A, Katti KS, Katti DR. In situ mineralized hydroxyapatite on amino acid modified nanoclays as novel bone biomaterial. Mater Sci Eng C. 2011;31:1017–29.CrossRefGoogle Scholar
  49. 49.
    Rafferty DW, Koenig JL. FTIR imaging for the characterization of controlled-release drug delivery applications. J Control Release. 2002;83:29–39.CrossRefGoogle Scholar
  50. 50.
    Hoch M, Bandara A. Determination of the adsorption process of tributyltin (TBT) and monobutyltin (MBT) onto kaolinite surface using Fourier transform infrared (FTIR) spectroscopy. Colloids Surf A Physicochem Eng Asp. 2005;253:117–24.CrossRefGoogle Scholar
  51. 51.
    Madejowá J. FTIR techniques in clay mineral studies. Vib Spectrosc. 2003;31:1–10.CrossRefGoogle Scholar
  52. 52.
    Xu W, Johnston CT, Parker P, Agnew SE. Infrared study of water sorption on Na-, Li-, Ca-, and Mg-exchanged (SWy−1 and SAz−1) montmorillonite. Clays Clay Miner. 2000;48:120–31.CrossRefGoogle Scholar
  53. 53.
    Hongping H, Ray FL, Jianxi Z. Infrared study of HDTMA + intercalated montmorillonite. Spectrochimica Acta Part A Mol Biomol Spectrosc. 2004;60:2853–9.CrossRefGoogle Scholar
  54. 54.
    Madejowá J, Janek M, Komadel P, Herbert H-J, Moog HC. FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems. Appl Clay Sci. 2002;20:255–71.CrossRefGoogle Scholar
  55. 55.
    White JL, Hem SL. Pharmaceutical aspect of clay–organic interaction. Ind Eng Chem Prod Res Dev. 1983;22:665–71.CrossRefGoogle Scholar
  56. 56.
    Tomic ZP, Kaluderovic L, Nikolic N, Markovic S, Makreski P. Thermal investigation of acetochlor adsorption on inorganic- and organic-modified montmorillonite. J Therm Anal Calorim. 2016;123:2313–9.CrossRefGoogle Scholar
  57. 57.
    Patel HA, Somani RS, Bajaj HC, Jasra RV. Synthesis and characterization of organic bentonite using Gujarat and Rajasthan clays. Curr Sci. 2007;92:1004–9.Google Scholar
  58. 58.
    Ni R, Huang Y, Yao C. Therogravimetric analysis of organoclays intercalated with the gemini surfactants. J Therm Anal Calorim. 2009;96:943–7.CrossRefGoogle Scholar
  59. 59.
    Soares VLP, Nascimento RSV, Menezes VJ, Batista L. TG characterization of organically modified montmorillonite. J Therm Anal Calorim. 2004;75:671–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • A. Rapacz-Kmita
    • 1
    Email author
  • E. Stodolak-Zych
    • 1
  • M. Dudek
    • 2
  • M. Gajek
    • 1
  • M. Ziąbka
    • 1
  1. 1.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakówPoland
  2. 2.Faculty of Energy and FuelsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations