Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 1, pp 499–506 | Cite as

Statistical classification of early and late wood through the growth rings using thermogravimetric analysis

  • Mario Francisco-Fernández
  • Javier Tarrío-Saavedra
  • Salvador Naya
  • Jorge López-Beceiro
  • Ramón Artiaga
Article

Abstract

The aim of this study is to statistically identify and distinguish wood samples corresponding to different areas of annual rings in trees of temperate regions, using the corresponding thermogravimetric (TG) and their first TG derivative (DTG) curves, and specifically to verify whether late and early wood chestnut samples are different with statistical significance, taking into account their TG and DTG curves. These significant differences are sought by applying statistical procedures based on functional data analysis (FDA), such as the functional ANOVA and the FDA classification methods. Each TG curve is firstly smoothed using the local polynomial regression estimator, and its first derivative is estimated. Then, functional ANOVA based on random projections (RP) is used to identify significant differences between TG or DTG curves of early and late wood samples. In order to know the extent of the differences between early and late wood samples, they are discriminated (and the correct classification proportion obtained) by employing a kernel nonparametric functional data analysis technique, based on the Bayes' rule, as well as functional generalized linear models and functional generalized additive models, allowing to classify materials using more than one type of thermal curves simultaneously. The results are compared with those obtained using some classical multivariate supervised classification methods: linear discriminant analysis, naive Bayes (NBC) and quadratic classification (QDA). The partial least squares (PLS) dimension reduction procedure was previously applied to the TG curves in order to employ these multivariate methods. The application of RP ANOVA shows significant differences between late and early wood regarding mass loss and mass loss rate under combustion. The use of PLS multivariate methods or FDA classification approaches applied to the TG and DTG curves allows to distinguish very accurately between late and early wood. The proposed method could be applied to other species to identify thermooxidative differences, combined with other experimental methods to find their chemical and physical causes.

Keywords

Wood Supervised classification Functional data analysis Multivariate analysis Thermogravimetric analysis Partial least squares 

Notes

Acknowledgements

This research has been supported by the Spanish Ministry of Science and Innovation, Grant MTM2014-52876-R. We are grateful to a referee for constructive and helpful suggestions.

References

  1. 1.
    Alén R, Kuoppala E, Pia O. Formation of the main degradation compound groups from wood and its components during pyrolysis. J Anal Appl Pyrolysis. 1996;36:137–48.CrossRefGoogle Scholar
  2. 2.
    Branca C, Di Blasi C. Global interinsic kinetics of wood oxidation. Fuel. 2004;83(1):81–7.CrossRefGoogle Scholar
  3. 3.
    Capon B. Botany for gardeners. Portland: Timber Publishing; 2005.Google Scholar
  4. 4.
    Cuesta-Albertos J, Febrero-Bande M. A simple multiway anova for functional data. TEST. 2010;19(3):537–57.CrossRefGoogle Scholar
  5. 5.
    Cuevas A, Febrero M, Fraiman R. Linear functional regression: the case of fixed design and functional response. Can J Stat. 2002;30:285–300.CrossRefGoogle Scholar
  6. 6.
    Cuevas A, Febrero M, Fraiman R. An anova test for functional data. Comput Stat Data Anal. 2004;47:111–22.CrossRefGoogle Scholar
  7. 7.
    Cuevas A, Febrero M, Fraiman R. On the use of the bootstrap for estimating functions with functional data. Comput Stat Data Anal. 2006;51(2):1063–74.CrossRefGoogle Scholar
  8. 8.
    Febrero-Bande M, Oviedo M. Statistical computing in functional data analysis: the r package fda.usc. J Stat Softw. 2012;51(4):1–28.CrossRefGoogle Scholar
  9. 9.
    Ferraty F, Romain Y. The Oxford handbook of functional data analysis. Oxford: Oxford University Press; 2010.Google Scholar
  10. 10.
    Ferraty F, Vieu P. The functional nonparametric model and application to spectrometric data. Comput Stat. 2002;17:545–64.CrossRefGoogle Scholar
  11. 11.
    Ferraty F, Vieu P. Curves discrimination: a nonparametric functional approach. Comput Stat. 2003;44:161–73.Google Scholar
  12. 12.
    Ferraty F, Vieu P. Nonparametric functional data analysis: theory and practice. New York: Springer; 2006.Google Scholar
  13. 13.
    Fisher RA. The use of multiple measurements in taxonomic problems. Ann Eugen. 1936;7:179–88.CrossRefGoogle Scholar
  14. 14.
    Francisco-Fernández M, Tarrío-Saavedra J, Mallik A, Naya S. A comprehensive classification of wood from thermogravimetric curves. Chemom Intell Lab Syst. 2012;118:159–72.CrossRefGoogle Scholar
  15. 15.
    Francisco-Fernández M, Tarrío-Saavedra J, Naya S, López-Beceiro J, Artiaga R. A comprehensive classification of wood from thermogravimetric curves. J Therm Anal Calorim. 2015;120:541–51.CrossRefGoogle Scholar
  16. 16.
    Gašparovič L, Koreňová Z, Jelemenský L. Kinetic study of wood chips decomposition by tga. In: Procedings 36th International Conference of SSCHE. Tatranské Matliare, World Scientific. 2009;178:1–14.Google Scholar
  17. 17.
    Gronli MG, Várhegyi G, Blasi C. Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res. 2002;41:4201–8.CrossRefGoogle Scholar
  18. 18.
    Guindeo Casasús A, García Esteban L, Peraza Sánchez F, Arriaga Martitegui F. Especies de maderas. Asociación de investigación técnica de las industrias de la madera y corcho (AITIM), Madrid. 1997Google Scholar
  19. 19.
    Lewis IR, Daniel NW, Chaffin NC, Griffiths PR. Raman spectrometry and neural networks for the classification of wood types-1. Spectrochim Acta A, Mol Biomol Spectrosc. 1994;50:1943–58.CrossRefGoogle Scholar
  20. 20.
    Locantore N, Marron JS, Simpson DG, Tripoli N, Zhang JT, Cohen KL. Robust principal component analysis for functional data (with discussion). Test. 1999;8:1–74.CrossRefGoogle Scholar
  21. 21.
    Mallik A, Tarrío-Saavedra J, Francisco-Fernández M, Naya S. Classification of wood micrographs by image segmentation. Chemom Intell Lab Syst. 2011. doi: 10.1016/j.chemolab.2011.05.005.
  22. 22.
    Miller RB. Structure of wood. In: Wood handbook: wood as an engineering material, Woodhead Publishing Limited, Madison, WI, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 1999.Google Scholar
  23. 23.
    Müller-Hagedorn M, Bockhorn H, Krebs L, Müller U. A comparative kinetic study on the pyrolysis of three different wood species. J Anal Appl Pyrolysis. 2003;68–69:231–49.CrossRefGoogle Scholar
  24. 24.
    Naya S, Francisco-Fernández M, Tarrío-Saavedra J, López-Beceiro J, Artiaga R. Application of functional data analysis to material science. In: Ferraty F, editor. Recent advances in functional data analysis and related topics. Berlin: Springer; 2011.Google Scholar
  25. 25.
    Naya S, Tarrío-Saavedra J, López-Beceiro J, Francisco-Fernández M, Flores M, Artiaga R. Statistical functional approach for interlaboratory studies with thermal data. J Thermal Anal Calorim. 2014;118(2):1229–43.CrossRefGoogle Scholar
  26. 26.
    Piuri V, Scotti F. Design of an automatic wood types classification system by using fluorescence spectra. IEEE Trans Syst Man Cybern Part C-Appl Rev. 2010;40:358–66.CrossRefGoogle Scholar
  27. 27.
    Poletto M, Zattera AJ, Forte MM, Santana RM. Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresour Technol. 2012;109:148–53.CrossRefGoogle Scholar
  28. 28.
    Prime RB, Bair HE, Gallagher PK, Riga A. Thermogravimetric analysis (TGA). In: Menczel JD, Prime RB, editors. Thermal analysis of polymers fundamentals and applications. Hoboken: Wiley; 2009.Google Scholar
  29. 29.
    R Development Core Team (2016) R: a Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  30. 30.
    Ramsay JO, Silverman BW. Functional data analysis. New York: Springer; 2005.CrossRefGoogle Scholar
  31. 31.
    Raveendran K, Ganesh A, Khilar KC. Pyrolysis characteristics of biomass and biomass components. Fuel. 1996;75:987–98.CrossRefGoogle Scholar
  32. 32.
    Roberts AF. A review of kinetics data for the pyrolysis of wood and related substances. Combust Flame. 1970;14:261–72.CrossRefGoogle Scholar
  33. 33.
    Rojas J, Alpuente J, Postigo D, Rojas I, Vignote S. Wood species identification using stress-wave analysis in the audible range. Appl Acoust. 2011;72(12):934–42.CrossRefGoogle Scholar
  34. 34.
    Ruppert D, Sheather SJ, Wand M. An effective bandwidth selector for local least squares regression. J Am Stat Assoc. 1995;90:1257–70.CrossRefGoogle Scholar
  35. 35.
    Sebio-Puñal T, Naya S, López-Beceiro J, Tarrío-Saavedra J, Artiaga R. Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J Thermal Anal Calorim. 2012;109(3):1163–7.CrossRefGoogle Scholar
  36. 36.
    Shen Q, Faraway J. An F test for linear models with functional responses. Statistica Sinica. 2004;14:1239–57.Google Scholar
  37. 37.
    Tarrío-Saavedra J, Naya S, Francisco-Fernández M, Artiaga R, López-Beceiro J. Application of functional ANOVA to the study of thermal stability of micro-nano silica epoxy composites. Chemom Intell Lab Syst. 2011;105:114–24.CrossRefGoogle Scholar
  38. 38.
    Tarrío-Saavedra J, Naya S, Francisco-Fernández M, López-Beceiro J, Artiaga R. Functional nonparametric classification of wood species from thermal data. J Therm Anal Calorim. 2011;104:87–100.CrossRefGoogle Scholar
  39. 39.
    Tarrío-Saavedra J, Francisco-Fernández M, Naya S, López-Beceiro J, Artiaga R. Wood identification using pressure DSC data. J Chem. 2013;27:475–87.CrossRefGoogle Scholar
  40. 40.
    Wand MP, Jones MC. Kernel smoothing. Suffolk: Chapman and Hall; 1995.CrossRefGoogle Scholar
  41. 41.
    Wang Hj, Zhang Gq, Qi Hn. Wood recognition using image texture features. PLoS ONE. 2013;8(10):e76–101.Google Scholar
  42. 42.
    Wehrens R. Chemometrics with R: multivariate data analysis in the natural sciences and life sciences. New York: Springer; 2011.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Mario Francisco-Fernández
    • 1
  • Javier Tarrío-Saavedra
    • 2
  • Salvador Naya
    • 3
  • Jorge López-Beceiro
    • 4
  • Ramón Artiaga
    • 4
  1. 1.Departamento de Matemáticas, Facultad de InformáticaUniversidade da CoruñaA CoruñaSpain
  2. 2.Departamento de Matemáticas. Facultade de HumanidadesUniversidade da CoruñaA CoruñaSpain
  3. 3.Departamento de Matemáticas. Escola Politécnica SuperiorUniversidade da CoruñaA CoruñaSpain
  4. 4.Departamento de Ingeniería Industrial II. Escola Politécnica SuperiorUniversidade da CoruñaA CoruñaSpain

Personalised recommendations