Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 3, pp 1879–1888 | Cite as

Molecular conductors as nanoparticles in the presence of long-chain alkyl imidazolium salts or amphiphilic molecules

Synthesis and thermoanalytical studies
  • Soukaina Foulal
  • Souad El HajjajiEmail author
  • Laszlo Trif
  • Abdelaziz Sabbar
  • Imane Chtioui
  • Dominique De Caro
  • Christophe Faulmann
  • Pascale De Caro
Article

Abstract

Nanoparticles of two molecule-based conductors, namely TTF·TCNQ and TTF[Ni(dmit)2]2, have been prepared in organic solution in the presence of ionic or nonionic species bearing a long-chain alkyl group, acting as growth-controlling agents. The size, morphology, and state of dispersion of the nanoparticles depended on the nature of the growth-controlling agent and the reaction temperature. In the presence of a long-chain alkyl-based ionic liquid at −50 °C, electron micrographs evidence that TTF·TCNQ nano-objects are frequently elongated, whereas TTF[Ni(dmit)2]2 nanoparticles are aggregated. In the presence of a neutral long-chain alkyl-based imine at room temperature, nanoparticles are spherical (mean diameter <20 nm) and well dispersed. Vibration spectra evidence that the amounts of charge transfer for TTF·TCNQ and TTF[Ni(dmit)2]2 as nano-objects are very similar to those for the same phases as bulk materials. According to the thermoanalytical investigations, the prepared nanoparticles are stable thermally up to approximately 200 °C, and their decomposition is generally a multi-step process. Their heat treatment results in various sulfur-containing volatiles (CS2, SO2, H2S); moreover, HCN is also detected in the case of nitrogen-containing molecules (TCNQ).

Keywords

Tetrathiafulvalene Metal dithiolene complexes Nanoparticles Ionic liquids N-Octylfurfuryl-imine Thermoanalytical measurements 

Notes

Acknowledgements

The authors would like to thank CNRST-Morocco for a grant (S. F.) and Ministère de l’Enseignement Supérieur et de la Recherche-France for a grant (I. C.). We would also like to thank CNRS-Toulouse and Université Paul Sabatier-Toulouse.

References

  1. 1.
    Valade L, Tanaka H. Molecular inorganic conductors and superconductors. In: Bruce DW, O’Hare D, Walton RI, editors. Molecular materials. London: Wiley; 2010. p. 211–80.CrossRefGoogle Scholar
  2. 2.
    Fraxedas J. Molecular organic materials—from molecules to crystalline solids. Cambridge: Cambridge University Press; 2006.CrossRefGoogle Scholar
  3. 3.
    Cassoux P, Valade L. Molecular inorganic superconductors. In: Bruce DW, O’Hare D, editors. Inorganic materials. 2nd ed. Chichester: Wiley; 1996.Google Scholar
  4. 4.
    Savy JP, de Caro D, Faulmann C, Valade L, Almeida M, Koike T, Fujiwara H, Sugimoto T, Fraxedas J, Ondarçuhu T, Pasquier C. Nanowires of molecule-based charge-transfer salts. New J Chem. 2007;31:519–27.CrossRefGoogle Scholar
  5. 5.
    Lv J, Liu H, Li Y. Self-assembly and properties of low-dimensional nanomaterials based on π-conjugated organic molecules. Pure Appl Chem. 2008;80:639–58.CrossRefGoogle Scholar
  6. 6.
    Ren L, Xian X, Yan K, Fu L, Liu Y, Chen S, Liu Z. A general electrochemical strategy for synthesizing charge-transfer complex micro/nanowires. Adv Funct Mater. 2010;20:1209–23.CrossRefGoogle Scholar
  7. 7.
    Jung YJ, Kim Y, Kim GT, Kang W, Noh DY. Electrochemical fabrication of (TMTSF)2X (X = PF6, BF4, ClO4) nanowires. J Nanosci Nanotechnol. 2012;12:5397–401.CrossRefGoogle Scholar
  8. 8.
    Bhatt A, Mechler Á, Martin LL, Bond AM. Synthesis of Ag and Au nanostructures in an ionic liquid: thermodynamic and kinetic effects underlying nanoparticle, cluster and nanowire formation. J Mater Chem. 2007;17:2241–50.CrossRefGoogle Scholar
  9. 9.
    de Caro D, Jacob K, Faulmann C, Legros J-P, Senocq F, Fraxedas J, Valade L. Ionic liquid-stabilized nanoparticles of charge transfer-based conductors. Synth Met. 2010;160:1223–7.CrossRefGoogle Scholar
  10. 10.
    de Caro D, Jacob K, Hahioui H, Faulmann C, Valade L, Kadoya T, Mori T, Fraxedas J, Viau L. Nanoparticles of organic conductors: synthesis and application as electrode material in organic field effect transistors. New J Chem. 2011;35:1315–9.CrossRefGoogle Scholar
  11. 11.
    de Caro D, Jacob K, Faulmann C, Valade L, Viau L. TTF[Ni(dmit)2]2: now as nanoparticles. C R Chim. 2012;15:950–4.CrossRefGoogle Scholar
  12. 12.
    de Caro D, Valade L, Faulmann C, Jacob K, Van Dorsselaer D, Chtioui I, Salmon L, Sabbar A, El Hajjaji S, Pérez E, Franceschi S, Fraxedas J. Nanoparticles of molecule-based conductors. New J Chem. 2013;37:3331–6.CrossRefGoogle Scholar
  13. 13.
    Gonfa G, Bustam SA, Man Z, Adbul Mutalib MI. Unique structure and solute-solvent interaction in imidazolium based ionic liquids: a review. Asian Trans Eng. 2011;1(05):24–34.Google Scholar
  14. 14.
    Philippot K, Chaudret B. Organometallic derived metals, colloids, and nanoparticles. In: Crabtree RH, Mingos MP, editors. Comprehensive organometallic chemistry III—from fundamentals to applications. Amsterdam: Elsevier; 2007. p. 71–99.Google Scholar
  15. 15.
    de Caro D, Souque M, Faulmann C, Coppel Y, Valade L, Fraxedas J, Vendier O, Courtade F. Colloidal solutions of organic conductive nanoparticles. Langmuir. 2013;29(28):8983–8.CrossRefGoogle Scholar
  16. 16.
    de Caro D, Faulmann C, Valade L, Jacob K, Chtioui I, Foulal S, de Caro P, Bergez-Lacoste M, Fraxedas J, Ballesteros B, Brooks JS, Steven E, Winter LE. Four molecular superconductors isolated as nanoparticles. Eur J Inorg Chem. 2014;24:4010–6.CrossRefGoogle Scholar
  17. 17.
    Wudl F. A new approach to the preparation of tetrathiafulvalenium salts. J Am Chem Soc. 1975;97(7):1962–3.CrossRefGoogle Scholar
  18. 18.
    Steimecke G, Sieler HJ, Kirmse R, Hoyer E. First synthesis of complexes of C3S5 2−. Phosphorus Sulfur. 1979;7:49–55.CrossRefGoogle Scholar
  19. 19.
    Bergez-Lacoste M, Thiebaud-Roux S, de Caro P, Fabre J.-F, Mouloungui Z. Dérivés du furfural pour une application biosolvants, Patent FR1351811, France; 2013.Google Scholar
  20. 20.
    Sun Y, Sheng P, Di C, Jiao F, Xu W, Qiu D, Zhu D. Organic thermoelectric materials and devices based on p- and n-Type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv Mater. 2012;24:932–7.CrossRefGoogle Scholar
  21. 21.
    Chappell JS, Bloch AN, Bryden WA, Maxfield M, Poelher PO, Cowan DO. Degree of charge transfer in organic conductors by infrared absorption spectroscopy. J Am Chem Soc. 1981;103(9):2442–3.CrossRefGoogle Scholar
  22. 22.
    Kuzmany H, Stolz HJ. Raman scattering of TTF-TCNQ and related compounds. J Phys C: Solid State Phys. 1977;10:2241–52.CrossRefGoogle Scholar
  23. 23.
    De Caro D, Fraxedas J, Faulmann C, Malfant I, Milon J, Lamère JF, Collière V, Valade L. Metallic thin films of TTF[Ni(dmit)2]2 by electrodeposition on (001)-oriented silicon substrates. Adv Mater. 2004;16:835–8.CrossRefGoogle Scholar
  24. 24.
    Savy JP, De Caro D, Valade L, Legros JP, Auban-Senzier P, Pasquier CR, Fraxedas J, Senocq F. Superconductivity in TTF[Ni(dmit)2]2 films. EPL. 2007;78:37005/1–5.CrossRefGoogle Scholar
  25. 25.
    Liu G, Fang Q, Xu W, Chen H, Wang C. Vibration assignment of carbon–sulfur bond in 2-thione-1,3-dithiole-4,5-dithiolate derivatives. Spectrochim Acta A. 2004;60:541–50.CrossRefGoogle Scholar
  26. 26.
    Pokhodnya KI, Faulmann C, Malfant I, Andreu-Solano R, Cassoux P, Mlayah A, Smirnov D, Léotin J. Infrared and Raman properties of [M(dmit)2] (M = Ni, Pd) based compounds. Synth Met. 1999;103:2016–9.CrossRefGoogle Scholar
  27. 27.
    Bozio R, Zanon I, Girlando A, Pecile C. Vibrational spectroscopy of molecular constituents of one-dimensional organic conductors. Tetrathiofulvalene (TTF), TTF+, and (TTF+)2 dimer. J Chem Phys. 1979;71:2282–93.CrossRefGoogle Scholar
  28. 28.
    Siedle AR. Metal complexes of tetrathiafulvalene and related compounds. In: Miller JS, editor. Extended linear chain compounds, vol. 2. New York: Plenum Press; 1982. p. 469–87.CrossRefGoogle Scholar
  29. 29.
    Muraoka Y, Imajo S, Yamashita S, Akutsu H, Nakazawa Y. Thermal anomaly around the superconductive transition of κ-(BEDT-TTF)2Cu(NCS)2 with external pressure and magnetic field control. J Therm Anal Calorim. 2016;123:1891–7.CrossRefGoogle Scholar
  30. 30.
    Ishikawa T, Yamashita S, Nakazawa Y, Kawamoto A, Oguni M. Calorimetric study of molecular superconductor κ-(BEDT-TTF)2Ag(CN)2H2O which contains water in the anion layers. J Therm Anal Calorim. 2008;92:435–8.CrossRefGoogle Scholar
  31. 31.
    Bhattacharjee A, Roy D, Roy M. Thermal degradation of a molecular magnetic material: {N(n-C4H9)4[FeIIFeIII(C2O4)3]}. J Therm Anal Calorim. 2012;109:1423–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Soukaina Foulal
    • 1
  • Souad El Hajjaji
    • 1
    Email author return OK on get
  • Laszlo Trif
    • 2
  • Abdelaziz Sabbar
    • 3
  • Imane Chtioui
    • 4
    • 5
  • Dominique De Caro
    • 4
    • 5
  • Christophe Faulmann
    • 4
    • 5
  • Pascale De Caro
    • 6
    • 7
  1. 1.Laboratoire S3ME, Faculté des SciencesMohammed V University in RabatRabatMorocco
  2. 2.Functional Interfaces Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
  3. 3.Equipe Matériaux, Nanomatériaux, Faculté des SciencesUniversité Med VRabatMorocco
  4. 4.LCC (Laboratoire de Chimie de Coordination)CNRSToulouse Cedex 4France
  5. 5.UPS, INPTUniversité de ToulouseToulouse Cedex 4France
  6. 6.INPT-ENSIACET, LCA (Laboratoire de Chimie Agro-Industrielle)Université de ToulouseToulouseFrance
  7. 7.UMR 1010 CAIINRAToulouseFrance

Personalised recommendations