Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 126, Issue 3, pp 1331–1337 | Cite as

Transparent poly(lactic acid)/halloysite nanotube nanocomposites with improved oxygen barrier and antioxidant properties

  • W. L. Tham
  • B. T. Poh
  • Z. A. Mohd Ishak
  • W. S. Chow
Article

Abstract

Poly(lactic acid) (PLA)/halloysite nanotube (HNT) nanocomposite thin films were prepared via melt compounding followed by compression molding. Epoxidized natural rubber (ENR) was used to toughen the PLA/HNT nanocomposites. The effects of the HNTs and ENR on the oxygen permeability of the PLA films were evaluated. The oxidation onset temperatures (OOTs) of the PLA nanocomposites were measured using differential scanning calorimetry (DSC), and the thermal decomposition was assessed by thermogravimetric analysis (TG). PLA/HNT6/ENR5 exhibits the lowest oxygen permeability coefficient of the films studied, which indicates that the barrier properties of PLA/HNT6 were enhanced by the incorporation of 5 mass% ENR. From the DSC results, the addition of 6 mass% HNT shifted the OOT of the PLA to higher temperatures, improving the antioxidant properties of the PLA nanocomposites. The thermal decomposition behavior of the PLA/HNT nanocomposites depends on the HNT loading, ENR loading, and testing environment (i.e., nitrogen and oxygen). The TEM images suggest that ENR promoted good interaction between the PLA and HNT, which confirms that good adhesion between HNT and ENR generates longer tortuous pathways for oxygen permeation and results in a PLA/HNT nanocomposite with enhanced barrier properties.

Keywords

Poly(lactic acid) Halloysite nanotube Oxygen permeability Optical properties Oxidation onset temperatures 

Notes

Acknowledgements

This study was funded by Universiti Sains Malaysia Research University Grant (Grant Nos. 814070, 814199), USM Incentive Grant (Grant No. 8021013), and Ministry of Higher Education Malaysia MyPHD Scholarship Programme.

References

  1. 1.
    Herrera N, Mathew AP, Oksman K. Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol. 2015;106:149–55.CrossRefGoogle Scholar
  2. 2.
    Suryanegara L, Nakagaito AN, Yano H. The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol. 2009;69:1187–92.CrossRefGoogle Scholar
  3. 3.
    Kunioka M, Ninomiya F, Funabashi M. Biodegradation of poly(lactic acid) powders proposed as the reference test materials for the international standard of biodegradation evaluation methods. Polym Degrad Stab. 2006;91:1919–28.CrossRefGoogle Scholar
  4. 4.
    Duan Z, Thomas N, Huang W. Water vapour permeability of poly(lactic acid) nanocomposites. J Membr Sci. 2013;445:112–8.CrossRefGoogle Scholar
  5. 5.
    Chow WS, Tham WL, Seow PC. Effects of maleated-PLA compatibilizer on the properties of poly(lactic acid)/halloysite clay composites. J Thermoplast Compos Mater. 2012;26:1349–63.CrossRefGoogle Scholar
  6. 6.
    Zhao Y, Qiu Z, Yang W. Effect of multi-walled carbon nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(l-lactide). Compos Sci Technol. 2009;69:627–32.CrossRefGoogle Scholar
  7. 7.
    Russo P, Cammarano S, Bilotti E, Peijs T, Cerruti P, Acierno D. Physical properties of polylactic acid/clay nanocomposite films: effect of filler content and annealing treatment. J Appl Polym Sci. 2014;. doi: 10.1002/APP.39798.Google Scholar
  8. 8.
    Prashantha K, Lecouvet B, Sclavons M, Lacrampe MF, Krawczak P. Poly(lactic acid)/halloysite nanotubes nanocomposites: structure, thermal, and mechanical properties as a function of halloysite treatment. J Appl Polym Sci. 2013;128:1895–903.Google Scholar
  9. 9.
    Notta-Cuvier D, Murariu M, Odent J, Delille R, Bouzouita A, Raquez JM, Franck L, Philippe D. Tailoring polylactide properties for automotive applications: effects of co-addition of halloysite nanotubes and selected plasticizer. Macromol Mater Eng. 2015;. doi: 10.1002/mame.201500032.Google Scholar
  10. 10.
    Gorrasi G, Pantani R, Murariu M, Dubois P. PLA/halloysite nanocomposite films: water vapour barrier properties and specific key characteristics. Macromol Mater Eng. 2014;299:104–15.CrossRefGoogle Scholar
  11. 11.
    Tham WL, Mohd Ishak ZA, Chow WS. Mechanical and thermal properties enhancement of poly(lactic acid)/halloysite nanocomposites by maleic-anhydride functionalized rubber. J Macromol Sci Part B Phys. 2014;53:371–82.CrossRefGoogle Scholar
  12. 12.
    Tham WL, Poh BT, MohdIshak ZA, Chow WS. Thermal behaviors and mechanical properties of halloysite nanotube-reinforced poly(lactic acid) nanocomposites. J Therm Anal Calorim. 2014;118:1639–47.CrossRefGoogle Scholar
  13. 13.
    Bijarimi M, Ahmad S, Rasid R. Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized natural rubber blends. J Elastom Plast. 2014;46:338–54.CrossRefGoogle Scholar
  14. 14.
    Zhang C, Wang W, Huang Y, Pan Y, Jiang L, Dan Y, Luo Y, Peng Z. Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber. Mater Des. 2013;45:198–205.CrossRefGoogle Scholar
  15. 15.
    Zakaria Z, Islam MS, Hassan A, Mohamad Haafiz M, Arjmandi R, Inuwa I, Hasan M. Mechanical properties and morphological characterization of PLA/chitosan/epoxidized natural rubber composites. Adv Mater Sci Eng. 2013;. doi: 10.1155/2013/629092.Google Scholar
  16. 16.
    Pongtanayut K, Thongpin C, Santawitee O. The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Procedia. 2013;34:888–97.CrossRefGoogle Scholar
  17. 17.
    Siracusa V, Rocculi P, Romani S, Rosa MD. Biodegradable polymers for food packaging: a review. Trends Food Sci Technol. 2008;19:634–43.CrossRefGoogle Scholar
  18. 18.
    Picard E, Espuche E, Fulchiron R. Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl Clay Sci. 2011;53:58–65.CrossRefGoogle Scholar
  19. 19.
    Pinto AM, Cabral J, Tanaka DAP, Mendes AM, Magalhães FD. Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly(lactic acid) films. Polym Int. 2013;62:33–40.CrossRefGoogle Scholar
  20. 20.
    Huang HD, Ren PG, Xu JZ, Xu L, Zhong GJ, Hsiao BS, Li ZM. Improved barrier properties of poly(lactic acid) with randomly dispersed graphene oxide nanosheets. J Membr Sci. 2014;464:110–8.CrossRefGoogle Scholar
  21. 21.
    Sekelik D, Stepanov E, Nazarenko S, Schiraldi D, Hiltner A, Baer E. Oxygen barrier properties of crystallized and talc-filled poly(ethylene terephthalate). J Polym Sci Part B Polym Phys. 1999;37:847–57.CrossRefGoogle Scholar
  22. 22.
    Sanchez-Garcia MD, Lagaron JM. Novel clay-based nanobiocomposites of biopolyesters with synergistic barrier to UV light, gas, and vapour. J Appl Polym Sci. 2010;118:188–99.CrossRefGoogle Scholar
  23. 23.
    Park SH, Lee HS, Choi JH, Jeong CM, Sung MH, Park HJ. Improvements in barrier properties of poly(lactic acid) films coated with chitosan or chitosan/clay nanocomposite. J Appl Polym Sci. 2012;125:E675–80.CrossRefGoogle Scholar
  24. 24.
    Gain O, Espuche E, Pollet E, Alexandre M, Dubois P. Gas barrier properties of poly(caprolactone)/clay nanocomposites: influence of the morphology and polymer/clay interactions. J Polym Sci Part B Polym Phys. 2005;43:205–14.CrossRefGoogle Scholar
  25. 25.
    Kumar SA, Yuelong H, Yumei D, Le Y, Kumaran M, Thomas S. Gas transport through nano poly(ethylene-co-vinyl acetate) composite membranes. Ind Eng Chem Res. 2008;47:4898–904.CrossRefGoogle Scholar
  26. 26.
    Svagan AJ, Åkesson A, Cárdenas M, Bulut S, Knudsen JC, Risbo J, Plackett D. Transparent films based on PLA and montmorillonite with tunable oxygen barrier properties. Biomacromolecules. 2012;13:397–405.CrossRefGoogle Scholar
  27. 27.
    Balachandran M, Bhagawan S. Mechanical, thermal and transport properties of nitrile rubber (NBR)—nanoclay composites. J Polym Res. 2012;19:1–10.CrossRefGoogle Scholar
  28. 28.
    Bertini F, Canetti M, Audisio G, Costa G, Falqui L. Characterization and thermal degradation of polypropylene montmorillonite nanocomposites. Polym Degrad Stab. 2006;91:600–5.CrossRefGoogle Scholar
  29. 29.
    Khumalo VM, Karger-Kocsis J, Thomann R. Polyethylene/synthetic boehmite alumina nanocomposites: structure, thermal and rheological properties. Express Polym Lett. 2010;4:264–74.CrossRefGoogle Scholar
  30. 30.
    Dominkovics Z, Hári J, Fekete E, Pukánszky B. Thermo-oxidative stability of polypropylene/layered silicate nanocomposites. Polym Degrad Stab. 2011;96:581–7.CrossRefGoogle Scholar
  31. 31.
    Poh BT, Lee KS. FTIR study of thermal oxidation of ENR. Eur Polym J. 1994;30:17–23.CrossRefGoogle Scholar
  32. 32.
    Tidjani A, Wald O, Pohl MM, Hentschel MP, Schartel B. Polypropylene–graft–maleic anhydride-nanocomposites: I—characterization and thermal stability of nanocomposites produced under nitrogen and in air. Polym Degrad Stab. 2003;82:133–40.CrossRefGoogle Scholar
  33. 33.
    Pandey JK, Raghunatha Reddy K, Pratheep Kumar A, Singh R. An overview on the degradability of polymer nanocomposites. Polym Degrad Stab. 2005;88:234–50.CrossRefGoogle Scholar
  34. 34.
    Sanchez-Garcia MD, Lopez-Rubio A, Lagaron JM. Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci Technol. 2010;21:528–36.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • W. L. Tham
    • 1
  • B. T. Poh
    • 2
  • Z. A. Mohd Ishak
    • 1
  • W. S. Chow
    • 1
  1. 1.School of Materials and Mineral Resources EngineeringUniversiti Sains MalaysiaPenangMalaysia
  2. 2.School of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations