Journal of Thermal Analysis and Calorimetry

, Volume 126, Issue 3, pp 1447–1453 | Cite as

Structural and thermodynamic properties of nanocrystalline Cr3C2–25(Ni20Cr) composite powders produced by high-energy ball milling

  • Cecílio A. Cunha
  • Olandir V. Correa
  • Issac J. Sayeg
  • Nelson B. Lima
  • Lalgudi V. Ramanathan


Nanostructured coatings have been used to protect components exposed to severe service conditions. High energy milling is widely used to produce nanocrystalline feedstock of coating materials such as chromium carbide and tungsten carbide. This paper presents the structural and thermodynamic properties of Cr3C2–25(Ni20Cr) powders that were high energy milled for different times. During the high energy milling of Cr3C2–25(Ni20Cr) powder, severe plastic deformation takes place. A small part of the energy spent in this process is stored in the crystal lattice as deformation energy. The crystallite size and microstrain in nanocrystalline Cr3C2–25(Ni20Cr) powders milled for different times were determined by X-ray diffraction measurements. Differential scanning calorimetric (DSC) studies of the milled powders revealed a broad transformation, characteristic of a large exothermic reaction in the nanostructured powder. The enthalpy variation measured by DSC permitted determination of the deformation energy stored in the Cr3C2–25(Ni20Cr) powders milled for different times. These measurements also enabled calculation of the specific heat variation of the milled powders.


Cr3C2–25(Ni20Cr) Crystallite size Microstrain Thermodynamic properties 


  1. 1.
    Benjamin JS. Dispersion strengthened superalloys by mechanical alloying. Metall Trans. 1970;1:2943–51.Google Scholar
  2. 2.
    Benjamin JS, Volin TE. The mechanism of mechanical alloying. Metall Trans. 1974;5:1929–34.CrossRefGoogle Scholar
  3. 3.
    Gilman PS, Benjamin JS. Mechanical alloying. Annu Rev Mater Sci. 1983;13:279–300.CrossRefGoogle Scholar
  4. 4.
    Aikin BJM, Courtney TH. The kinetics of composite particle formation during mechanical alloying. Metall Trans. 1993;24A:647–57.CrossRefGoogle Scholar
  5. 5.
    He J, Schoenung JM. Nanostructured coatings. Mater Sci Eng. 2002;A336:274–319.CrossRefGoogle Scholar
  6. 6.
    He J, Ice M, Lavernia EJ. Synthesis of nanostructured Cr3C2–25(Ni20Cr) coatings. Metall Mater Trans. 2000;31A:555–64.CrossRefGoogle Scholar
  7. 7.
    Suryanarayana C, Koch CC. In: Suryanarayana C, editor. Non-equilibrium processing of materials. New York: Pergamon; 1999. p. 313–44.Google Scholar
  8. 8.
    Kear BH, Mccandlish LE. Chemical processing and properties of nanostructured WC-Co materials. Nanostruct Mater. 1993;3:19–30.CrossRefGoogle Scholar
  9. 9.
    Cunha CA, Lima NB, Martinelli JR, Bressiani AHA, Padial AGF, Ramanathan LV. Microstructure and mechanical properties of thermal sprayed Cr3C2-Ni20Cr coatings. Mater Res. 2008;11(2):137–43.CrossRefGoogle Scholar
  10. 10.
    Cunha CA, Padial AGF, Lima NB, Martinelli JR, Correa OV, Ramanathan LV. Effect of high energy milling parameters on nanostructured Cr3C2-Ni20Cr powder characteristics. Mater Sci Forum. 2008;591–93:282–8.CrossRefGoogle Scholar
  11. 11.
    Padial AGF, Cunha CA, Correa OV, Lima NB, Ramanathan LV. Effect of Cr3C2-NiCr powder characteristics on structure and properties of thermal sprayed nanostructured coatings. Mater Sci Forum. 2010;660–661:379–84.CrossRefGoogle Scholar
  12. 12.
    Sharafi S, Gomari S. Effects of milling and subsequent consolidation treatment on the microstructural properties and hardness of nanocrystalline chromium carbide powders. Int J Refract Met Hard. 2012;30(1):57–63.CrossRefGoogle Scholar
  13. 13.
    Jia K, Fisher TE, Gallois B. Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites. Nanostruct Mater. 1998;10:875–91.CrossRefGoogle Scholar
  14. 14.
    Roy M, Pauschitz A, Wernisch J, Franek F. The influence of temperature on the wear of Cr3C2–25(Ni20Cr) coating—comparison between nanocrystalline grains and conventional grains. Wear. 2004;257:799–811.CrossRefGoogle Scholar
  15. 15.
    McCandlish LE, Kear BH, Kim BK. Processing and properties of nanostructured WC-Co. Nanostruct Mater. 1992;1:119–24.CrossRefGoogle Scholar
  16. 16.
    Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Metall Mater. 2000;48:1–29.CrossRefGoogle Scholar
  17. 17.
    Birringer R. Nanocrystalline materials. Mater Sci Eng. 1989;7:33–43.CrossRefGoogle Scholar
  18. 18.
    Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184.CrossRefGoogle Scholar
  19. 19.
    Rupp J, Birringer R. Enhanced specific-heat-capacity measurements of nanometer-sized crystalline materials. Phys Rev B. 1987;36:7888–90.CrossRefGoogle Scholar
  20. 20.
    Hellstern E, Fecht HJ, Fu Z, Johnson WL. Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu. J Appl Phys. 1989;65:305–10.CrossRefGoogle Scholar
  21. 21.
    Yadav TP, Yadav RM, Singh DP. Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci Technol. 2012;2(3):22–48. doi:10.5923/j.nn.20120203.01.Google Scholar
  22. 22.
    He J, Ice M, Lavernia EJ. Synthesis and characterization of nanostructured Cr3C2-NiCr. Nanostruct Mater. 1998;10:1271–83.CrossRefGoogle Scholar
  23. 23.
    Benjamin JS. Fundamentals of mechanical alloying. In Shingu PH, editor. Mechanical alloying. Mater Sci Forum. 1992. 88–90, p. 1–18.Google Scholar
  24. 24.
    Benjamin JS, Bomford MJ. Dispersion strengthened aluminum made by mechanical alloying. Metall Mater Trans A. 1977;8:1301–5.CrossRefGoogle Scholar
  25. 25.
    Koch CC. The synthesis and structure of nanocrystalline material produced by mechanical attrition: a review. Nanostruct Mater. 1993;2:109–29.CrossRefGoogle Scholar
  26. 26.
    Koch CC. Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostruct Mater. 1997;9:13–22.CrossRefGoogle Scholar
  27. 27.
    Koch CC, Cavin OB, Mckamey CG, Scarbrough JO. Preparation of ‘‘amorphous’’ Ni60Nb40 by mechanical alloying. Appl Phys Lett. 1983;43:1017–9.CrossRefGoogle Scholar
  28. 28.
    Huang B, Perez RJ, Lavernia EJ. Grain growth of nanocrystalline Fe–Al alloys produced by cryomilling in liquid argon and nitrogen. Mater Sci Eng. 1998;A255:124–32.CrossRefGoogle Scholar
  29. 29.
    Witkin DB, Lavernia EJ. Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci. 2006;51:1–60.CrossRefGoogle Scholar
  30. 30.
    Han BQ, Lavernia EJ, Mohamed FA. Mechanical behavior of a cryomilled near-nanostructured Al–Mg–Sc alloy. Metall Mater Trans A. 2005;36A:345–55.CrossRefGoogle Scholar
  31. 31.
    Dieter GE. Mechanical metallurgy. New York: McGraw-Hill; 1976. p. 236.Google Scholar
  32. 32.
    Coterril P, Mould PR. Recrystallization and grain growth in metals. New York: Wiley; 1976.Google Scholar
  33. 33.
    Warren BE. X-ray diffraction. London: Addison-Wesley; 1959.Google Scholar
  34. 34.
    Cullity BD. Elements of X-ray diffraction. London: Addison-Wesley; 1967.Google Scholar
  35. 35.
    Klug P, Alexander LE. X-ray diffraction procedures. New York: Wiley; 1974. p. 643.Google Scholar
  36. 36.
    Suryanarayana C. X-ray diffraction: a practical approach. New York: Plenum Press; 1998.CrossRefGoogle Scholar
  37. 37.
    Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. 1969;2:65–71.CrossRefGoogle Scholar
  38. 38.
    Enzo S, Schiffini L. Profile fitting and analytical functions. In: Snyder RL, Fiala J, Bunge HJ, editors. Defect and microstructure analysis by diffraction. New York: Oxford University Press; 1999.Google Scholar
  39. 39.
    Langford JI. Use of pattern decomposition or simulation to study microstructure: theoretical considerations. In: Snyder RL, Fiala J, Bunge HJ, editors. Defect and microstructure analysis by diffraction, International Union of Crystallography. New York: Oxford University Press; 1999.Google Scholar
  40. 40.
    Balzar D. Voigt function model in diffraction-line broadening analysis. In: Snyder RL, Fiala J, Bunge HJ, editors. Defect and microstructure analysis by diffraction, International Union of Crystallography. New York: Oxford University Press; 1999.Google Scholar
  41. 41.
    Pulmtree A, Pawlus LD. Basic questions in fatigue. In: Fong JT, Fields RJ, editors. ASTM STP 924, vol. 1. Philadelphia: American Society for Testing and Materials; 1988. p. 81–97.Google Scholar
  42. 42.
    Xu W, Song X, Lu N, Huang C. Thermodynamic and experimental study on phase stability in nanocrystalline alloys. Acta Mater. 2010;58:396–407.CrossRefGoogle Scholar
  43. 43.
    Tjong SC, Chen H. Nanocrystalline materials and coatings. Mater Sci Eng. 2004;R45:1–88.CrossRefGoogle Scholar
  44. 44.
    Wolf D, Yamakov V, Phillpot SR, Mukherjee A, Gleiter H. Deformation of nanocrystalline materials by molecular-dynamics simulations: relationship to experiments. Acta Mater. 2005;53:1–40.CrossRefGoogle Scholar
  45. 45.
    Cunha CA. Ph.D. Thesis Development of nanostructured Cr3C2–25(Ni20Cr) coatings, IPEN, Univ. São Paulo 2012.
  46. 46.
    Speyer RF. Thermal analysis of materials. New York: Marcel Dekker; 1994. p. 35–45.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Cecílio A. Cunha
    • 1
  • Olandir V. Correa
    • 1
  • Issac J. Sayeg
    • 2
  • Nelson B. Lima
    • 1
  • Lalgudi V. Ramanathan
    • 1
  1. 1.Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN-SPSão PauloBrazil
  2. 2.Instituto de Geociências da Universidade de São Paulo – USPSão PauloBrazil

Personalised recommendations