Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 2, pp 1339–1349 | Cite as

Combustion process of torrefied wood biomass

A kinetic study
  • Aneta MagdziarzEmail author
  • Małgorzata Wilk
  • Robert Straka
Article

Abstract

The present research is focused on investigation of torrefied biomass combustion process and kinetic analysis. Two wood biomass samples (B1 and B2) were torrefied in a specially designed set-up under 1.0 h of residence time, 230, 260 and 290 °C temperatures, and argon atmosphere. The studied materials were characterised in terms of their chemical composition and calorific value. The results showed the improvements of biomass properties towards higher carbon content and low moisture content fuel. The behaviour and comparison of raw and torrefied biomass during the combustion process was investigated by thermal analysis (TG, DTG and DTA). The samples were heated at an ambient temperature up to 700 °C at constant rates: 10, 20 and 40 °C min in air flow. The MS technique was also used simultaneously with TG to determine gaseous products from combustion process (namely NO, CH4, CO2, and H2O). The kinetic parameters were calculated for torrefied biomass combustion using three isoconversional methods: Friedman, Kissinger–Akahira–Sunose and Flynn–Wall–Ozawa. The isoconversional methods were used to find dependency of the activation energy of studied processes on the conversion degree. The kinetic data for raw and torrefied biomass indicates that torrefaction process reduces the activation energy of the studied biomass. The average values of activation energy for biomass combustion e.g. TB1 are E a = 111; 105.2 and 110.4 kJ mol−1 calculated by Friedman, KAS and FWO methods, respectively. For all studied biomass samples, the slight differences between the values of activation energies calculated by Friedman, FWO and KAS methods were obtained.

Keywords

Torrefaction Biomass Kintetics analysis 

References

  1. 1.
    Prins MJ, Ptasinski KJ, Janssen FJJG. More efficient biomass gasification via torrefaction. Energy. 2006;31:3458–70.CrossRefGoogle Scholar
  2. 2.
    Van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ. Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenerg. 2011;35:3748–62.Google Scholar
  3. 3.
    Ciolkosz D, Wallace R. A review of torrefaction for bioenergy feedstock production. Biofuel Bioprod Bioref. 2011;5:317–29.CrossRefGoogle Scholar
  4. 4.
    Chew JJ, Doshi V. Recent advances in biomass pretreatment—torrefaction fundamentals and technology. Renew Sust Energ Rev. 2011;15:4212–422.CrossRefGoogle Scholar
  5. 5.
    Williams A, Jones JM, Ma L, Pourkashanian M. Pollutants from the combustion of solid biomass fuels. Prog Energy Comb Sci. 2012;38:113–37.CrossRefGoogle Scholar
  6. 6.
    Magdziarz A, Wilk M, Zajemska M. Modelling of pollutants concentrations from the biomass combustion process. Chem Process Eng. 2011;32:423–33.Google Scholar
  7. 7.
    Magdziarz A, Wilk M. Thermal characteristics of the combustion process of biomass and sewage sludge. J Therm Anal Calorim. 2013;114:519–29.CrossRefGoogle Scholar
  8. 8.
    Varol M, Atimtay AT, Bay B, Olgun H. Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis. Thermochim Acta. 2010;510:195–201.CrossRefGoogle Scholar
  9. 9.
    Chen WH, Kuo PCh. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by thermogravimetry. Energy. 2010;35:2580–6.CrossRefGoogle Scholar
  10. 10.
    Skreiberg A, Skreiberg O, Sandquist J, Sorum L. TGA and macro-TGA characterisation of biomass fuels and fuel mixtures. Fuel. 2011;90:2189–97.CrossRefGoogle Scholar
  11. 11.
    Magdziarz A, Werle S. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS. Waste Manag. 2014;34:174–9.CrossRefGoogle Scholar
  12. 12.
    Calvo LF, Sanchez ME, Moran A, Garcia AI. TG–MS a technique for a better monitoring of the pyrolysis, gasification and combustion of two kinds of sewage sludge. J Therm Anal Calorim. 2004;78:587–98.CrossRefGoogle Scholar
  13. 13.
    Nocquet T, Dupont C, Commandre J-M, Grateau M, Thiery S, Salvador S. Volatile species release during torrefaction of wood and its macromalecular consistuents: part 1—experimantal study. Energy. 2014;72:180–7.CrossRefGoogle Scholar
  14. 14.
    Sanchez ME, Otero M, Gomez X, Moran A. Thermogravimetric kinetic analysis of the combustion of biowastes. Renew Energy. 2009;34:1622–7.CrossRefGoogle Scholar
  15. 15.
    Scott SA, Dennis JS, Davidson JF, Hayhurst AN. Thermogravimetric measurements of the kinetics of pyrolysis of dried sewage sludge. Fuel. 2006;85:1248–53.CrossRefGoogle Scholar
  16. 16.
    Ji S, Zhang S, Lu X, Liu Y. A new method for evaluating the sewage sludge pyrolysis kinetics. Waste Manag. 2010;30:1225–9.CrossRefGoogle Scholar
  17. 17.
    Grammelis P, Basinas P, Malliopoulou A, Sakellaropoulos G. Pyrolysis kinetics and combustion characteristics of waste recovered fuels. Fuel. 2009;88:195–205.CrossRefGoogle Scholar
  18. 18.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  19. 19.
    White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis. 2011;91:1–33.CrossRefGoogle Scholar
  20. 20.
    Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203:159–65.CrossRefGoogle Scholar
  21. 21.
    Font R, Fullana A, Conesa J. Kinetic models for the pyrolysis and combustion of two types of sewage sludge. J Anal Appl Pyrolysis. 2005;74:429–38.CrossRefGoogle Scholar
  22. 22.
    Mothe CG, de Miranda IC. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods. J Therm Anal Calorim. 2013;113:497–505.CrossRefGoogle Scholar
  23. 23.
    Flynn JH. The ‘temperature integral’—its use and abuse. Thermochim Acta. 1997;300:83–92.CrossRefGoogle Scholar
  24. 24.
    Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.CrossRefGoogle Scholar
  25. 25.
    Doyle CD. Series approximations to the equation of thermogravimetric data. Nature. 1965;207:290–1.CrossRefGoogle Scholar
  26. 26.
    Akahira T, Sunose T. Joint convention of four electrical institutes. Research report (China Institute of Technology). Sci Technol. 1971;16:22–31.Google Scholar
  27. 27.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  28. 28.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  29. 29.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B: Polym Lett. 1966;4:323–8.CrossRefGoogle Scholar
  30. 30.
    Friedman HL. Kinetics of thermal degradation of char-foaming plastics from thermogravimetry: application to a phenolic resin. J Polymer Sci. 1965;6C:183–95.Google Scholar
  31. 31.
    Friedl A, Padouvas E, Rotter H, Varmuza K. Prediction of heating values from elemental composition. Anal Chim Acta. 2005;544:191–8.CrossRefGoogle Scholar
  32. 32.
    Bridgeman TG, Fones JM, Williams A, Waldron DJ. An investigation of the grindability of two terrified energy crops. Fuel. 2010;89:3911–8.CrossRefGoogle Scholar
  33. 33.
    Wilk M, Magdziarz A, Kalemba I. Characterisation of renewable fuels’ torrefacion process with different instrumental techniques. Energy. 2015;87:259–69.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Aneta Magdziarz
    • 1
    Email author
  • Małgorzata Wilk
    • 1
  • Robert Straka
    • 1
  1. 1.Faculty of Metals Engineering and Industrial Computer ScienceAGH University of Science and TechnologyKrakowPoland

Personalised recommendations