Journal of Thermal Analysis and Calorimetry

, Volume 126, Issue 3, pp 1559–1566 | Cite as

The thermal activation process of coal gangue selected from Zhungeer in China

  • Lixin Li
  • Yinmin Zhang
  • Yongfeng Zhang
  • Junmin Sun
  • Zhifei Hao
Article

Abstract

The thermal behavior of coal gangue selected from Zhungeer, Inner Mongolia Autonomous Region of China, was investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetry (TG), derivative thermogravimetry (DTG), and scanning electron microscope (SEM). The XRD data indicated that the mineral compositions of the coal gangue were kaolinite, boehmite, and quartz. The coal-gangue sample was considered as belonging to a typical mixture of kaolinite and boehmite. The XRD and FT-IR spectra clearly showed that the structural changes and dehydroxylation of coal gangue occurred with increased temperature from 100 to 900 °C. The reaction activity of coal gangue could be effectively improved by calcination. The calcined coal gangue contained considerable active amorphous Al2O3 and SiO2 and had significant loss on ignition. The optimum activation temperature range of coal gangue was from 600 to 700 °C. The dissolution contents of SiO2 and Al2O3 were 92.31 and 64.44 %, respectively, when the calcination temperature at 700 °C.

Keywords

Coal gangue Mineral composition Kaolinite Thermal activation Activity 

References

  1. 1.
    Nichol D, Tovey NP. Remediation and monitoring of a burning coal refuse bank affecting the Southsea Looproad at Brymbo, North Wales. Eng Geol. 1998;50(3–4):309–18.CrossRefGoogle Scholar
  2. 2.
    Zhang Y, Nakano J, Liu L, Wang X. Co-combustion and emission characteristics of coal gangue. J Therm Anal Calorim. 2015;120(3):1883–92.CrossRefGoogle Scholar
  3. 3.
    Li Y, Yao Y, Liu X, Sun H. Improvement on pozzolanic reactivity of coal gangue by integrated thermal and chemical activation. Fuel. 2013;109(7):527–33.CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Li J, Cheng F, Guo Y. Study of the combustion behavior and kinetics of different types of coal gangue. Combust Explos Shock Waves. 2015;51(6):670–7.CrossRefGoogle Scholar
  5. 5.
    Jaesuk R. Improvement on reactivity of cementitious waste materials by mechano-chemical activation. Mater Lett. 2003;58:903–6.Google Scholar
  6. 6.
    Cheng H, Zhang Z, Liu Q, Leung J. A new method for determining platy particle aspect ratio: a kaolinite case study. Appl Clay Sci. 2014;97–98(8):125–31.CrossRefGoogle Scholar
  7. 7.
    Cheng H, Frostc RL, Yang J, Liu Q, He J. A new method for determining platy particle aspect ratio: a kaolinite case study. Spectrochim Acta Part A Mol Biomol Spectrosc. 2010;77(5):1014–20.CrossRefGoogle Scholar
  8. 8.
    Cao Z, Cao Y, Dong H, Zhang J, Sun C. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue. Int J Miner Process. 2016;146:23–8.CrossRefGoogle Scholar
  9. 9.
    Mei Z, Huamin Z. Composite activation of gangue and preparation of high strength gepolyer material. Bull Chin Ceram Soc. 2014;33(8):1908–14.Google Scholar
  10. 10.
    Zhang C, Yang XY, Li YF. Mechanism and structural analysis of the thermal activation of coal-gangue. Adv Mater Res. 2011;356–360:1807–12.Google Scholar
  11. 11.
    Yuanyuan L, Qisheng W. Thermal activation of coal gangue. Environ Pollut Control. 2008;30(9):26–30.Google Scholar
  12. 12.
    Chakraborty AK. New data on thermal effects of kaolinite in the high temperature region. J Therm Anal Calorim. 2003;71(3):799–808.CrossRefGoogle Scholar
  13. 13.
    Chen-chen G, Xu-yan S, Dong-xu L. Mechanism discussion on calcined activate coal gangue. J Mater Sci Eng. 2005;23(1):89–91.Google Scholar
  14. 14.
    Zhou C, Liu G, Yan Z, Fang T. Transformation behavior of mineral composition and trace elements during coal gangue combustion. Fuel. 2012;97(7):644–50.CrossRefGoogle Scholar
  15. 15.
    Li Yu, Yao Y, Liu X, Sun H, Ni W. Improvement on pozzolanic reactivity of coal gangue by integrated thermal and chemical activation. Fuel. 2013;109:527–33.CrossRefGoogle Scholar
  16. 16.
    Li D, Song X, Gong C, Pan Z. Research on cementitious behavior and mechanism of pozzolanic cement with coal gangue. Cem Concr Res. 2006;36(9):1752–9.CrossRefGoogle Scholar
  17. 17.
    Zhang C. Study on the volcanic ash activity of low temperature burning coal 2003;369–373.Google Scholar
  18. 18.
    GuoWei LD, Jianhua C, Nanru Y. Research on cementing performance of actived coal gangue. Min Res Dev. 2007;27(3):35–42.Google Scholar
  19. 19.
    Yuanyuan L, Qisheng W. Thermal activation of coal gangue. Environ Pollut Control. 2008;30(9):26–30.Google Scholar
  20. 20.
    Koç S, Toplan N, Yildiz K. Effects of mechanical activaiton on the non-isothermal kinetics of mullite formation from kaolinite. J Therm Anal Calorim. 2003;71(3):799–808.CrossRefGoogle Scholar
  21. 21.
    Chen-chen G, Xu-yan S, Dong-xu L, et al. Mechanism discussion on calcined activate coal gangue. J Mater Sci Eng. 2005;23(1):88–91.Google Scholar
  22. 22.
    Chakraborty AK. New data on thermal effects of kaolinite in the high temperature region. J Therm Anal Calorim. 2003;71(3):799–808.CrossRefGoogle Scholar
  23. 23.
    Jieyu C, Chunjie Y, Weimin W, et al. Structure and thermal stability of Kaolinite/urea intercalated compound. J Chin Ceram Soc. 2010;38(9):1837–42.Google Scholar
  24. 24.
    GB15892-2009 determination of aluminium oxide in the national standard aluminium polychloride.Google Scholar
  25. 25.
    Cheng H, Kuo L, Liu Q, Zhang S, Li X, Frost RL. Insight into the thermal decomposition of kaolinite intercalated with potassium acetate: an evolved gas analysis. J Therm Anal Calorim. 2014;117(3):1231–9.CrossRefGoogle Scholar
  26. 26.
    JunKai H, LuJun W, Qinfu L. A study on mineralogical properties of kaolinite in Huaibei coal bearing strata used as carrier for FCC catalyst. Acta Min. 2011;31(2):274–9.Google Scholar
  27. 27.
    Bayram H, Önal M, Yılmaz H, Sarıkaya Y. Thermal analysis of a white calcium bentonite. J Therm Anal Calorim. 2010;101:873–9.CrossRefGoogle Scholar
  28. 28.
    Alex TC. An insight into the changes in the thermal analysis curves of boehmite with mechanical activation. J Therm Anal Calorim. 2014;117(1):163–71.CrossRefGoogle Scholar
  29. 29.
    Guzmán-Castillo ML, Bokhimi X, Toledo-Antonio A. Effect of boehmite crystallite size and steaming on alumina properties. J Phys Chem B. 2001;105(11):2099–106.CrossRefGoogle Scholar
  30. 30.
    Zhang C, Yang XY, Li YF. Mechanism and structural analysis of the thermal activation of coal-gangue. Adv Mater Res. 2012;356–360:1807–12.Google Scholar
  31. 31.
    Cheng H, Liu Q, Yang J, Frostc RL. Thermogravimetric analysis of selected coal-bearing strata kaolinite. Thermochim Acta. 2010;507–08(33):84–90.CrossRefGoogle Scholar
  32. 32.
    Ming H. Modification of kaolinite by controlled hydrothermal deuteration–a DRIFT spectroscopic study. Clay Miner. 2004;39:349–62.CrossRefGoogle Scholar
  33. 33.
    Cao Z, Cao Y, Dong H. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue. Int J Miner Process. 2016;146:23–8.CrossRefGoogle Scholar
  34. 34.
    Cao Z, Cao Y, Dong H, Zhang J, Sun C. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue. Int J Miner Process. 2016;146:23–8.CrossRefGoogle Scholar
  35. 35.
    Cheng H, Kuo L, Liu Q, Zhang S, Li X, Frost RL. Insight into the thermal decomposition of kaolinite intercalated with potassium acetate: an evolved gas analysis. J Therm Anal Calorim. 2014;117(3):1231–9.CrossRefGoogle Scholar
  36. 36.
    Zhang Y, Xu L, Seetharaman S. Effects of chemistry and mineral on structural evolution and chemical reactivity of coal gangue during calcination: towards efficient utilization. Mater Struct. 2015;48:2779–93.CrossRefGoogle Scholar
  37. 37.
    Yuanyuan L, Qisheng W. Thermal activation of coal gangue. Environ Pollut Control. 2008;30(9):26–30.Google Scholar
  38. 38.
    Zhang C, Yang XY, Li YF. Mechanism and structural analysis of the thermal activation of coal-gangue. Adv Mater Res. 2012;356–360:1807–12.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Lixin Li
    • 1
  • Yinmin Zhang
    • 1
  • Yongfeng Zhang
    • 1
  • Junmin Sun
    • 1
  • Zhifei Hao
    • 1
  1. 1.Chemical Engineering CollegeInner Mongolia University of TechnologyHohhotChina

Personalised recommendations