Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 1, pp 487–497 | Cite as

Insight on thermal behaviour of new complexes of Ni(II), Cu(II) and Zn(II) with a bismacrocyclic ligand developed as biologically active species

  • Mihaela Badea
  • Cristina Bucur
  • Mariana Carmen Chifiriuc
  • Coralia Bleotu
  • Maria-Nicoleta Grecu
  • Veronica Lazar
  • Dana Marinescu
  • Rodica Olar
Article
  • 175 Downloads

Abstract

A multi-component reaction involving metal ion, amines and formaldehyde has been used for a series of decaaza bismacrocyclic complexes M2L(CH3COO)4·nH2O [(1) M: Ni, n = 2.5; (2) M:Cu, n = 1; (3) M:Zn, n = 10; L:1,3-bis(N,N-1,3,6,9,12-pentaazacyclotridecane)-benzene] preparation. Elemental analyses, ESI-MS, IR, UV–Vis–NIR, NMR and EPR spectra, magnetic susceptibility at room temperature, molar conductivities, as well as thermogravimetric analysis, provided data concerning complexes features. The macrocyclic ligand behaves as bischelate, resulting in either a square planar or an octahedral stereochemistry. The in vitro screening of the antimicrobial activity was performed against both reference and clinical isolates multi-drug-resistant strains. The overall antimicrobial potency of complexes was enhanced in comparison with the free ligand, against both planktonic and biofilm-embedded pathogenic strains. Complexes exhibit no cytotoxicity on the HCT 8 tumour cells. Thermogravimetric curves (TG, DTG and DTA) evidenced in air processes as water elimination, acetate into carbonate transformation as well as oxidative degradation of the bismacrocyclic ligand. The powder X-ray diffraction data indicate MO (M: Ni, Cu, Zn) as final product.

Keywords

Complexes Bismacrocycle One-pot condensation Antimicrobial Thermal behaviour 

References

  1. 1.
    Schols D, Esté JA, Henson G, De Clercq E. Bicyclams, a class of potent anti-HIV agents, are targeted at the HIV coreceptor fusin/CXCR-4. Antiviral Res. 1997;35:147–56.CrossRefGoogle Scholar
  2. 2.
    De Clercq E, Yamamoto N, Pauwels R, Balzarini J, Witvrouw M, De Vreese K, Debyser Z, Rosenwirth B, Peichl P, Datema R, Thornton D, Skerlj R, Gaul F, Admanabhan S, Bridger G, Henson G, Abrams M. Highly. potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM 3100. Antimicrob Agents Chemother. 1994;38:668–74.CrossRefGoogle Scholar
  3. 3.
    De Clercq E. New developments in anti-HIV chemotherapy. Biochim Biophys Acta. 2002;1587:258–75.CrossRefGoogle Scholar
  4. 4.
    Feig C, Jones JO, Kraman M, Wells RJB, Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL, Teichmann SA, Janowitz T, Jodrell DI, Tuveson DA, Fearon DT. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA. 2013;110:20212–7.CrossRefGoogle Scholar
  5. 5.
    Kaden TA. Dinuclear metal complexes of bis-macrocycles. Coord Chem Rev. 1999;190–192:371–89.CrossRefGoogle Scholar
  6. 6.
    Chartres JD, Lindoy LF, Meehan GV. Transition and post-transition metal systems incorporating linked synthetic macrocycles as structural elements. Coord Chem Rev. 2001;216–217:249–86.CrossRefGoogle Scholar
  7. 7.
    Bernhardt PV, Kim JY, Kim Y, Lee YH, Chow S. Macrocycles and medicine—facile synthesis of a bis(macrocycle) with pendent functionality. C R Chimie. 2005;8:211–4.CrossRefGoogle Scholar
  8. 8.
    Mewis RE, Archibald SJ. Biomedical applications of macrocyclic ligand complexes. Coord Chem Rev. 2010;254:1686–712.CrossRefGoogle Scholar
  9. 9.
    Drewry JA, Gunning PT. Recent advances in biosensory and medicinal therapeutic applications of zinc(II) and copper(II) coordination complexes. Coord Chem Rev. 2011;255:459–72.CrossRefGoogle Scholar
  10. 10.
    Salavati-Niasari M, Amiri A. Binuclear copper(II) complexes of new bis(macrocyclic) 16-membered pentaaza subunits are linked together by bridging nitrogen of amine: synthesis, characterization and catalytic activity. J Mol Catal A Chem. 2005;235:114–21.CrossRefGoogle Scholar
  11. 11.
    Salavati-Niasari M, Bazarganipour M. Bis(macrocyclic) copper(II) complexes containing aromatic nitrogen–nitrogen linkers produced by in situ one pot template condensation reaction (IOPTCR): synthesis, characterization and catalytic oxidation of tetrahydrofuran. Inorg Chem Commun. 2006;9:332–6.CrossRefGoogle Scholar
  12. 12.
    Salavati-Niasari M. 16-Membered pentaaza bis(macrocyclic)nickel(II) complexes containing aromatic nitrogen–nitrogen linkers, {[Ni([16]aneN5)]2R}(ClO4)4: synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen. J Mol Catal A Chem. 2007;272:207–12.CrossRefGoogle Scholar
  13. 13.
    Salavati-Niasari M, Mir N. Synthesis, characterization and catalytic oxidation of tetrahydrofuran with 16-membered pentaazabis(macrocyclic) copper(II) complexes; {[Cu([16]aneN5)]2R}4+ (R=aromatic nitrogen–nitrogen linkers). J Incl Phenom Macrocycl Chem. 2007;59:223–30.CrossRefGoogle Scholar
  14. 14.
    Collin JP, Jouaiti A, Sauvage JP. Electrocatalytic properties of (tetraazacyclotetradecane)nickel(2+) and Ni2(biscyclam)4+ with respect to carbon dioxide and water reduction. Inorg Chem. 1988;27:1986–90.CrossRefGoogle Scholar
  15. 15.
    Mochizuki K, Manaka S, Takeda I, Kondo T. Synthesis and structure of [6,60-bi(5,7-dimethyl-1,4,8,11-tetraazacyclotetradecane)] dinickel(II) triflate and its catalytic activity for photochemical CO2 reduction. Inorg Chem. 1996;35:5132–6.CrossRefGoogle Scholar
  16. 16.
    de Alwis C, Crayston JA, Cromie T, Eisenblätter T, Hay RW, Lampeka YaD, Tsymbal LV. Cyclic voltammetry study of the electrocatalysis of carbon dioxide reduction by bis(polyazamacrocyclic)nickel complexes. Electrochim Acta. 2000;45:2061–74.CrossRefGoogle Scholar
  17. 17.
    Valks GC, McRobbie G, Lewis EA, Hubin TJ, Hunter TM, Sadler PJ, Pannecouque C, De Clercq E, Archibald SJ. Configurationally restricted bismacrocyclic CXCR4 receptor antagonists. J Med Chem. 2006;49:6162–5.CrossRefGoogle Scholar
  18. 18.
    McRobbie G, Valks GC, Empson CJ, Khan A, Silversides JD, Pannecouque C, De Clercq E, Fiddy SG, Bridgeman AJ, Young NA, Archibald SJ. Probing key coordination interactions: configurationally restricted metal activated CXCR4 antagonists. Dalton Trans. 2007;43:5008–18. CrossRefGoogle Scholar
  19. 19.
    Gerlach LO, Jakobsen JS, Jensen KP, Rosenkilde MR, Skerlj RT, Ryde U, Bridger GJ, Schwartz TW. Metal ion enhanced binding of AMD3100 to Asp262 in the CXCR4 receptor. Biochemistry. 2003;42:710–7.CrossRefGoogle Scholar
  20. 20.
    Hunter TM, McNae IW, Simpson DP, Smith AM, Moggach S, White F, Walkinshaw MD, Parsons S, Sadler PJ. Configurations of Nickel–cyclam antiviral complexes and protein recognition. Chem Eur J. 2007;13:40–50.CrossRefGoogle Scholar
  21. 21.
    Khan A, Nicholson G, Greenman J, Madden L, McRobbie G, Pannecouque C, De Clercq E, Ullom R, Maples DL, Maples RD, Silversides JD, Hubin TJ, Archibald SJ. Binding optimization through coordination chemistry: CXCR4 chemokine receptor antagonists from ultrarigid metal complexes. J Am Chem Soc. 2009;131:3416–7.CrossRefGoogle Scholar
  22. 22.
    Ross A, Soares DC, Covelli D, Pannecouque C, Budd L, Collins A, Robertson N, Parsons S, De Clercq E, Kennepohl P, Sadler PJ. Oxovanadium(IV) cyclam and bicyclam complexes: potential CXCR4 receptor antagonists. Inorg Chem. 2010;49:1122–32.CrossRefGoogle Scholar
  23. 23.
    Olar R, Badea M, Marinescu D, Calu L, Bucur C. Thermal behaviour of some new complexes with bismacrocyclic ligands as potential biological active species. J Therm Anal Calorim. 2011;105:571–5.CrossRefGoogle Scholar
  24. 24.
    Bucur C, Badea M, Calu L, Marinescu D, Grecu MN, Stanica N, Chifiriuc MC, Olar R. Thermal behaviour of some new complexes with decaaza bismacrocyclic ligand as potential antimicrobial species. J Therm Anal Calorim. 2012;110:235–41.CrossRefGoogle Scholar
  25. 25.
    Bucur C, Korošec RC, Badea M, Calu L, Chifiriuc MC, Grecu N, Stanică N, Marinescu D, Olar R. Investigation of thermal stability, spectral, magnetic, and antimicrobial behavior for new complexes of Ni(II), Cu(II), and Zn(II) with a bismacrocyclic ligand. J Therm Anal Calorim. 2013;113:1287–95.CrossRefGoogle Scholar
  26. 26.
    Bucur C, Badea M, Chifiriuc MC, Bleotu C, Iorgulescu EE, Badea IA, Grecu MN, Lazăr V, Patriciu O-I, Marinescu D, Olar R. Studies on thermal, spectral, magnetic and biological properties of new Ni(II), Cu(II) and Zn(II) complexes with a bismacrocyclic ligand bearing an aromatic linker. J Therm Anal Calorim. 2014;115:2179–89.CrossRefGoogle Scholar
  27. 27.
    Rastogi A, Nayan R. Studies on copper(II) complexes of some polyaza macrocycles derived from 1,2-diaminoethane. J Coord Chem. 2009;62:3366–76.CrossRefGoogle Scholar
  28. 28.
    Deacon GB, Philips JR. Relationships between the carbon–oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.CrossRefGoogle Scholar
  29. 29.
    Zeleńák V, Vargová Z, Györyová K, Večerníková E, Balek V. Cooper(II) acetates with aliphatic/heterocycles amines coupled TG-DTA-EGA study, IR characterization and structure correlation. J Therm Anal Calorim. 2005;82:747–54.CrossRefGoogle Scholar
  30. 30.
    Geary WJ. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev. 1971;7:81–122.CrossRefGoogle Scholar
  31. 31.
    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. Part B. Applications in coordination, organometallic, and bioinorganic chemistry. 6th ed. New Jersey: Wiley; 2009.Google Scholar
  32. 32.
    Solomon EI, Lever ABP. Inorganic electronic structure and spectroscopy. Applications and case studies. New York: Wiley; 2006.Google Scholar
  33. 33.
    Gispert JR. Coordination chemistry. Weinheim: Wiley-VCH; 2008.Google Scholar
  34. 34.
    Hathaway BJ, Billing DE. The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord Chem Rev. 1970;5:143–207.CrossRefGoogle Scholar
  35. 35.
    Yousef TA. Abu El-Reash GM, El-Gammal OA, Bedier RA. Co(II), Cu(II), Cd(II), Fe(III) and U(VI) complexes containing a NSNO donor ligand: synthesis, characterization, optical band gap, in vitro antimicrobial and DNA cleavage studies. J Mol Struct. 2012;1029:149–60.CrossRefGoogle Scholar
  36. 36.
    Dametto PR, Ambrozini B, Caires FJ, Franzini VP, Ionashiro M. Synthesis, characterization and thermal behaviour of solid-state compounds of folates with some bivalent transition metals ions. J Therm Anal Calorim. 2014;115:161–6.CrossRefGoogle Scholar
  37. 37.
    Kharadi GJ. Molar conductance, magnetic susceptibility, mass spectra, and thermal decomposition studies on Cu(II) compounds with substituted terpyridines and clioquinol drug. J Therm Anal Calorim. 2014;117:333–41.CrossRefGoogle Scholar
  38. 38.
    Zeleńák V, Vargová Z, Györyová K, Večerníková E, Balek V. Cooper(II) acetates with aliphatic/heterocycles amines coupled TG-DTA-EGA study, IR characterization and structure correlation. J Therm Anal Calorim. 2005;82:747–54.CrossRefGoogle Scholar
  39. 39.
    Singh K, Kumar Y, Pari P, Kumar M, Sharma C. Cobalt, nickel, copper and zinc complexes with 1,3-diphenyl-1H-pyrazol-4-carboxyaldehyde Schiff bases: antimicrobial, spectroscopic, thermal and fluorescence studies. Eur J Med Chem. 2012;52:313–21.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Mihaela Badea
    • 1
  • Cristina Bucur
    • 1
    • 2
  • Mariana Carmen Chifiriuc
    • 3
    • 4
  • Coralia Bleotu
    • 5
  • Maria-Nicoleta Grecu
    • 6
  • Veronica Lazar
    • 3
    • 4
  • Dana Marinescu
    • 1
  • Rodica Olar
    • 1
  1. 1.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of BucharestBucharestRomania
  2. 2.Institute for Control of Biological Products and Veterinary MedicinesBucharestRomania
  3. 3.Department of Microbiology, Faculty of BiologyUniversity of BucharestBucharestRomania
  4. 4.Research Institute of the University of BucharestBucharestRomania
  5. 5.Stefan S Nicolau Institute of VirologyBucharestRomania
  6. 6.National Institute for Materials PhysicsBucharest-MagureleRomania

Personalised recommendations