Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 1, pp 789–797 | Cite as

Kinetic analysis of poly(ethylene oxide)/lithium montmorillonite nanocomposites

  • Matko Erceg
  • Irena Krešić
  • Miće Jakić
  • Branka Andričić


Poly(ethylene oxide)/lithium montmorillonite (PEO/LiMMT) nanocomposites were prepared by melt intercalation method. The degradation of PEO/LiMMT nanocomposites was performed by non-isothermal thermogravimetry in nitrogen atmosphere at four heating rates (2.5, 5, 10 and 20 °C min−1). The obtained data were used for the kinetic analysis of the degradation process. Kinetic analysis was performed using the isoconversional Friedman method in combination with the multivariate nonlinear regression method. Kinetic analysis revealed the complexity of the thermal degradation process for both pure PEO and all PEO/LiMMT nanocomposites. The contribution of the each individual degradation stage was determined, and each of them was independently analyzed. Kinetic parameters (activation energy, pre-exponential factor and kinetic model) were also calculated for each degradation stage of all investigated samples.


Kinetic analysis Multivariate nonlinear regression method Poly(ethylene oxide) Lithium montmorillonite 


  1. 1.
    Manoratne CH, Rajapakse RMG, Dissanayake MAKL. Ionic conductivity of poly(ethylene oxide) (PEO)-montmorillonite nanocomposites prepared by intercalation from aqueous medium. Int J Electrochem Sci. 2006;1:32–46.Google Scholar
  2. 2.
    Liao C-S, Ye W-B. Enhanced ionic conductivity in poly(ethylene oxide)/layered double hydroxide nanocomposites electrolytes. J Polym Res. 2003;10:241–6.CrossRefGoogle Scholar
  3. 3.
    Sandí G, Carrado KA, Joachin H, Lu W, Prakash J. Polymer nanocomposites for lithium battery applications. J Power Sources. 2003;119–121:492–6.CrossRefGoogle Scholar
  4. 4.
    Chen H-W, Chang F-C. The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay. Polymer. 2001;42:9763–9.CrossRefGoogle Scholar
  5. 5.
    Quartatone E, Mustarelli P, Magistris A. PEO-based composite polymer electrolytes. Solid State Ion. 1998;110:1–14.CrossRefGoogle Scholar
  6. 6.
    Erceg M, Jozić D, Banovac I, Perinović S, Bernstorff S. Preparation and characterization of melt intercalatedpoly(ethylene oxide)/lithium montmorillonite nanocomposites. Thermochim Acta. 2014;579:86–92.CrossRefGoogle Scholar
  7. 7.
    Pielichowski K, Flejtuch K. Non-oxidative thermal degradation of poly(ethylene oxide): kinetic and thermoanalytical study. J. Anal. Appl. Pyrolysis. 2005;73:131–8.CrossRefGoogle Scholar
  8. 8.
    Calahorra E, Cortezar M, Guzman GM. Thermal decomposition of poly(ethylene oxide), poly(methyl methacrylate) and their mixtures by thermogravimetric method. J Polym Sci C. 1985;23:257–60.Google Scholar
  9. 9.
    Barbadillo F, Mier JL, Artiaga R, Losada R, García L. Kinetics analysis of the thermal decomposition of polyethylene glycols under inert gas. In: Proceedings of the eight European Symposium on Thermal Analysis and Calorimetry. Barcelona; 2002. p. 75.Google Scholar
  10. 10.
    Vrandečić NS, Erceg M, Jakić M, Klarić I. Kinetic analysis of thermal degradation of poly(ethylene glycol) and poly(ethylene oxide)s of different molecular weight. Thermochim Acta. 2010;498:71–80.CrossRefGoogle Scholar
  11. 11.
    Jakić M, Vrandečić NS, Erceg M. Kinetic analysis of the non-isothermal degradation of poly(vinyl chloride)/poly(ethylene oxide) blends. J Therm Anal Calorim. 2016;123:1513–22.CrossRefGoogle Scholar
  12. 12.
    Friedman HL. Kinetic of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic resin. J Polym Sci C. 1963;6:183–95.CrossRefGoogle Scholar
  13. 13.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  14. 14.
    Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.CrossRefGoogle Scholar
  15. 15.
    Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.CrossRefGoogle Scholar
  16. 16.
    Farjas J, Roura P. Isoconversional analysis of solid state transformations. J Therm Anal Calorim. 2011;105:757–66.CrossRefGoogle Scholar
  17. 17.
    Sovizi MR, Fakhrpour H, Bagheri S, Bardajee GR. Non-isothermal dehydration kinetic study of a new swollen biopolymer silver nanocomposite hydrogel. J Therm Anal Calorim. 2015;121:1383–91.CrossRefGoogle Scholar
  18. 18.
    Fakhrpour G, Bagheri S, Golriz M, Shekari M, Omrani A, Shameli A. Degradation kinetics of PET/PEN blend nanocomposites using differential isoconversional and differential master plot approaches. J Therm Anal Calorim. 2016;. doi: 10.1007/s10973-015-5024-z.Google Scholar
  19. 19.
    Opfermann J. Kinetic analysis using multivariate non-linear regression: I. Basic concepts. J Therm Anal Calorim. 2000;60:641–58.CrossRefGoogle Scholar
  20. 20.
    Lysenko EN, Surzhikov AP, Zhuravkov SP, Vlasov VA, Pustovalov AV, Yavorovsky NA. The oxidation kinetics study of ultrafine iron powders by thermogravimetric analysis. J Therm Anal Calorim. 2014;115:1447–52.CrossRefGoogle Scholar
  21. 21.
    Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115:1780–91.CrossRefGoogle Scholar
  22. 22.
    NETZSCH Thermokinetics Software Manual. Selb: NETZSCH-Geratebau GmbH; 2014 (Chapter 5.3.1).Google Scholar
  23. 23.
    Vyazovkin S. Isoconversional kinetics of thermally stimulated processes. Cham: Springer; 2015. p. 12.Google Scholar
  24. 24.
    Madorsky SL, Strauss S. Thermal degradation of polyethylene oxide and polypropylene oxide. J Polym Sci. 1959;36:183–94.CrossRefGoogle Scholar
  25. 25.
    Liu L, Xu X. Polystyrene nanocomposites with improved combustion properties by using TMA-POSS and organic clay. J Therm Anal Calorim. 2016;. doi: 10.1007/s10973-015-5181-0.Google Scholar
  26. 26.
    Triantou MI, Chatzigiannakis EM, Tarantili PA. Evaluation of thermal degradation mechanisms and their effect on the gross calorific value of ABS/PC/organoclay nanocomposites. J Therm Anal Calorim. 2015;119:337–47.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Matko Erceg
    • 1
  • Irena Krešić
    • 1
  • Miće Jakić
    • 1
  • Branka Andričić
    • 1
  1. 1.Faculty of Chemistry and TechnologyUniversity of SplitSplitCroatia

Personalised recommendations