Journal of Thermal Analysis and Calorimetry

, Volume 125, Issue 1, pp 205–214 | Cite as

Thermal properties of ZnO and bimetallic Ag–Cu alloy reinforced poly(lactic acid) nanocomposite films

  • Jasim Ahmed
  • Yasir Ali Arfat
  • Edgar Castro-Aguirre
  • Rafael Auras


Poly(lactic acid) (PLA)-based nanocomposite films were prepared by incorporating zinc oxide (ZnO) (<50 and <100 nm) and bimetallic Ag–Cu alloy (<100 nm) nanoparticles (NP), and polyethylene glycol as a plasticizer via a solvent casting method. Thermal properties of the nanocomposites films were investigated using differential scanning calorimeter and thermogravimetric analyzer. The addition of 20 % PEG to the neat-PLA decreased the glass transition temperature (T g) significantly from about 60 to 17 °C, whereas the melting temperature (T m) did not drop significantly. Metallic nanoparticles increased the T g; however, Ag–Cu alloy exhibited a greater increase than ZnO nanocomposite films. Particle size of ZnO NP did not show significant difference in the T g values of the films. The T m value of the nanocomposite films was not influenced by the NP. The addition of plasticizer initiated the crystallization (cold and melt) of the PLA/PEG blend, which was substantially improved by the incorporation of NP in the composite films, in particular, 1 mass% loading. Non-isothermal crystallization was significantly affected by the cooling and heating rates. Thermogravimetric analysis data indicated that only Ag–Cu alloy could improve the thermal stability of nanocomposite films. Furthermore, nanoparticles significantly influenced the UV barrier and the transmittance of plasticized films.


Poly(lactic acid) Ag–Cu alloy nanoparticles ZnO nanoparticles Glass transition Non-isothermal crystallization Nanocomposite films 



The authors express their gratitude to the Kuwait Institute for Scientific Research for providing the grant for the research work (Grant number FB087C).


  1. 1.
    Boccaccini AR, Notingher I, Maquet V, Jérôme R. Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by Bioglass® particles for tissue engineering applications. J Mater Sci Mater Med. 2003;14:443–50.CrossRefGoogle Scholar
  2. 2.
    Ahmed J, Varshney SK. Polylactides—chemistry, properties and green packaging technology: a review. Int J Food Prop. 2011;14:37–58.CrossRefGoogle Scholar
  3. 3.
    Bai H, Huang C, Xiu H, Zhang Q, Deng H, Wang K, Chen F, Fu Q. Significantly improving oxygen barrier properties of polylactide via constructing parallel-aligned shish-kebab-like crystals with well-interlocked boundaries. Biomacromolecules. 2014;15:1507–14.CrossRefGoogle Scholar
  4. 4.
    Yu Y, Chen CK, Law WC, Weinheimer E, Sengupta S, Prasad PN, Cheng C. Polylactide-graft-doxorubicin nanoparticles with precisely controlled drug loading for pH-triggered drug delivery. Biomacromolecules. 2014;15:524–32.CrossRefGoogle Scholar
  5. 5.
    Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S. Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf. 2010;9:552–71.CrossRefGoogle Scholar
  6. 6.
    FDA. Inventory of effective food contact substance (FCS). 2002; Notifications No. 178.
  7. 7.
    Liang JZ, Zhou L, Tang CY, Tsui CP. Crystalline properties of poly(l-lactic acid) composites filled with nanometer calcium carbonate. Compos B Eng. 2013;45:1646–50.CrossRefGoogle Scholar
  8. 8.
    Zhao H, Cui Z, Wang X, Turng LS, Peng X. Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/clay nanocomposites. Compos B Eng. 2013;51:79–91.CrossRefGoogle Scholar
  9. 9.
    Ebadi-Dehaghani H, Barikani M, Khonakdar HA, Jafari SH. Microstructure and non-isothermal crystallization behavior of PP/PLA/clay hybrid nanocomposites. J Therm Anal Calorim. 2015;121:1–12.Google Scholar
  10. 10.
    Auras R, Lim LT, Selke SE, Tsuj H. Poly (lactic acid): synthesis, structure, properties, processing and applications. Hoboken: Wiley; 2010.CrossRefGoogle Scholar
  11. 11.
    Ahmed J, Varshney SK, Auras R. Rheological and thermal properties of polylactide/silicate nanocomposites films. J Food Sci. 2010;75:N17–24.CrossRefGoogle Scholar
  12. 12.
    Swain SK, Isayev AI. Effect of ultrasound on HDPE/clay nanocomposites: rheology, structure and properties. Polymer. 2007;48:281–9.CrossRefGoogle Scholar
  13. 13.
    Kovacevic V, Vrsaljko D, Blagojevic SL, Leskovac M. Adhesion parameters at the interface in nanoparticulate filled polymer systems. Polym Eng Sci. 2008;48:1994–2002.CrossRefGoogle Scholar
  14. 14.
    Arfat YA, Benjakul S, Prodpran T, Sumpavapol P, Songtipya P. Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocolloid. 2014;41:265–73.CrossRefGoogle Scholar
  15. 15.
    Ray SS, Yamada K, Okamoto M, Fujimoto Y, Ogami A, Ueda K. New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties. Polymer. 2003;44:6633–46.CrossRefGoogle Scholar
  16. 16.
    Rhim JW, Hong SI, Ha CS. Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT Food Sci Technol. 2009;42:612–7.CrossRefGoogle Scholar
  17. 17.
    Jayaramudu J, Das K, Sonakshi M, Reddy GSM, Aderibigbe B, Sadiku R, Ray SS. Structure and properties of highly toughened biodegradable polylactide/ZnO biocomposite films. Int J Biol Macromol. 2014;64:428–34.CrossRefGoogle Scholar
  18. 18.
    Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubois P. PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polym J. 2013;49:3471–82.CrossRefGoogle Scholar
  19. 19.
    Espitia PJP, et al. Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydr Polym. 2013;94:199–208.CrossRefGoogle Scholar
  20. 20.
    Fisher EW, Sterzel HJ, Wegner G. Investigation of the structure of solution growth crystals of lactide copolymers by means of chemical reactions. Kolloid-ZUZ Polym. 1973;251:980–90.CrossRefGoogle Scholar
  21. 21.
    Shankar S, Teng X, Li G, Rhim JW. Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloid. 2015;45:264–71.CrossRefGoogle Scholar
  22. 22.
    Kanmani P, Rhim JW. Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloid. 2014;35:644–52.CrossRefGoogle Scholar
  23. 23.
    Kulinski Z, Piorkowska E, Gadzinowska K, Stasiak M. Plasticization of poly (l-lactide) with poly (propylene glycol). Biomacromolecules. 2006;7:2128–35.CrossRefGoogle Scholar
  24. 24.
    Chieng BW, Ibrahim NA, Wan-Yunus WMZ, Hussein MZ. Plasticized poly(lactic acid) with low molecular weight poly(ethylene glycol): mechanical, thermal, and morphology properties. J Appl Polym Sci. 2013;130:4576–80.Google Scholar
  25. 25.
    Sungsanit K, Kao N, Bhattacharya SN. Properties of linear poly (lactic acid)/polyethylene glycol blends. Polym Eng Sci. 2012;52:108–16.CrossRefGoogle Scholar
  26. 26.
    Martin O, Averous L. Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer. 2001;42:6209–19.CrossRefGoogle Scholar
  27. 27.
    Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E. Thermal and mechanical properties of plasticized poly (l-lactic acid). J Appl Polym Sci. 2003;90:1731–8.CrossRefGoogle Scholar
  28. 28.
    Cacciotti I, Fortunati E, Puglia D, Kenny JM, Nanni F. Effect of silver nanoparticles and cellulose nanocrystals on electro-spun poly(lactic) acid mats: morphology, thermal properties and mechanical behavior. Carbohyd Polym. 2014;103:22–31.CrossRefGoogle Scholar
  29. 29.
    Noori FTM, Ali NA. Study the mechanical and thermal properties of biodegradable polylacticacid/poly ethylene glycol nanocomposites. Int J App Innov Eng Manag. 2014;3:459–64.Google Scholar
  30. 30.
    Chieng BW, Ibrahim NA, Yunus WMZW, Hussein MZ. Poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymer. 2013;6:93–104.CrossRefGoogle Scholar
  31. 31.
    Mi HY, Li Z, Turng LS, Sun Y, Gong S. Silver nanowire/thermoplastic polyurethane elastomer nanocomposites: thermal, mechanical, and dielectric properties. Mater Design. 2014;56:398–404.CrossRefGoogle Scholar
  32. 32.
    Lee SJ, Hahm WG, Kikutani T, Kim BC. Effects of clay and POSS nanoparticles on the quiescent and shear-induced crystallization behavior of high molecular weight poly(ethylene terephthalate). Polym Eng Sci. 2009;49:317–23.CrossRefGoogle Scholar
  33. 33.
    Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM. Microstructure and non-isothermal cold crystallization of PLA composites based on silver nanoparticles and nano-crystalline cellulose. Polym Deg Stab. 2012;97:2027–36.CrossRefGoogle Scholar
  34. 34.
    Díez-Pascual AM, Díez-Vicente AL. Poly (3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties. Int J Mol Sci. 2014;15:10950–73.CrossRefGoogle Scholar
  35. 35.
    Ahmed J, Zhang JX, Song Z, Varshney SK. Thermal properties of polylactides. J Therm Anal Calorim. 2009;95:957–64.CrossRefGoogle Scholar
  36. 36.
    Supaphol P, Thanomkiat P, Junkasem J, Dangtungee R. Non-isothermal melt-crystallization and mechanical properties of titanium (IV) oxide nanoparticle-filled isotactic polypropylene. Polym Test. 2007;26:20–37.CrossRefGoogle Scholar
  37. 37.
    Cai YH, Tang Y, Zhao LS. Poly (l-lactic acid) with the organic nucleating agent N, N, N′-tris (1H-benzotriazole) trimesinic acid acethydrazide: crystallization and melting behavior. J Appl Polym Sci. 2015;132:32.Google Scholar
  38. 38.
    Fischer HR, Gielgens LH, Koster TPM. Nanocomposites from polymers and layered minerals. Acta Polym. 1999;50:122–6.CrossRefGoogle Scholar
  39. 39.
    Petrovic XS, Javni I, Waddong A, Banhegyi GJ. Structure and properties of polyurethane–silica nanocomposites. J Appl Polym Sci. 2000;76:133–51.CrossRefGoogle Scholar
  40. 40.
    Ogata N, Jimenez G, Kawai H, Ogihara T. Structure and thermal/mechanical properties of poly (l-lactide)-clay blend. J Polym Sci Part B Polym Phys. 1997;35:389–96.CrossRefGoogle Scholar
  41. 41.
    Chang JH, An YU, Sur GS. Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. J Polym Sci Part B Polym Phys. 2003;41:94–103.CrossRefGoogle Scholar
  42. 42.
    Mróz P, Białas S, Mucha M, Kaczmarek H. Thermogravimetric and DSC testing of poly(lactic acid)nanocomposites. Thermochim Acta. 2013;573:186–92.CrossRefGoogle Scholar
  43. 43.
    Ligot S, Benali S, Ramy-Ratiarison R, Murariu M, Snyders R. Mechanical, optical and barrier properties of PLA-layered silicate nanocomposites coated with organic plasma polymer thin films. Mater Sci Eng Adv Res. 2015;2015(1):1.Google Scholar
  44. 44.
    Murariu M, Doumbia A, Bonnaud L, Dechief AL, et al. High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules. 2011;12:1762–71.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Jasim Ahmed
    • 1
  • Yasir Ali Arfat
    • 1
  • Edgar Castro-Aguirre
    • 2
  • Rafael Auras
    • 2
  1. 1.Food and Nutrition Program, Environment and Life Sciences Research CenterKuwait Institute for Scientific ResearchSafatKuwait
  2. 2.School of PackagingMichigan State UniversityEast LansingUSA

Personalised recommendations