Journal of Thermal Analysis and Calorimetry

, Volume 125, Issue 1, pp 397–405 | Cite as

A comparative study on thermal behavior of solid-state light trivalent lanthanide isonicotinates in dynamic dry air and nitrogen atmospheres

  • W. D. G. Nunes
  • J. A. Teixeira
  • A. L. C. S. do Nascimento
  • F. J. Caires
  • E. Y. Ionashiro
  • M. IonashiroEmail author


Characterization, thermal stability, and thermal decomposition of light trivalent lanthanide isonicotinates Ln(L)3·2H2O (Ln = La to Gd, except Pm; L = isonicotinate) were investigated employing simultaneous thermogravimetry and differential scanning calorimetry (TG–DSC), DSC, infrared spectroscopy (FTIR), evolved gas analysis by TG–DSC coupled to FTIR, elemental analysis, and complexometry. The dehydration of these compounds occurs in a single step, and the thermal decomposition of the anhydrous compounds occurs in one or two (air) and two or three steps (N2). The final residues of thermal decomposition were CeO2, Pr6O11, and Ln2O3 (Ln = La, Nd to Gd) in air atmosphere, while in N2 atmosphere the mass loss is still being observed up to 1000 °C. The results also provided information concerning the gaseous products evolved during the thermal decomposition in dynamic dry air and nitrogen atmospheres.


Lanthanide isonicotinates Thermal behavior Evolved gas analysis 



The authors thank FAPESP (Proc. 2013/09022-7), CNPq, and CAPES foundations (Brazil) for financial support.

Supplementary material

Supplementary material 1 (AVI 42409 kb)

Supplementary material 2 (AVI 234896 kb)


  1. 1.
    De Sá GF, Malta OL, de Mello Donegá C, Simas AM, Longo RL, Santa-Cruz PA, et al. Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord Chem Rev. 2000.
  2. 2.
    Van Loenhout-Rooyackers JH, Veen J. Treatment of pulmonary tuberculosis. Neth J Med. 1998;53:7–14.
  3. 3.
    Lin CZJ, Chui SSY, Lo SMF, Shek FLY, Wu M, Suwinska K, et al. Physical stability vs. chemical lability in microporous metal coordination polymers: a comparison of [Cu(OH)(INA)]n and [Cu(INA)2]n: INA = 1,4-(NC5H4CO2). Chem Commun (Camb). 2002;1:1642–3.CrossRefGoogle Scholar
  4. 4.
    Duan LM, Lin CK, Wang H, Liu XM, Lin J. Syntheses, structures and luminescence properties of five lanthanide-isonicotinate coordination polymers. Inorg Chim Acta. 2010;363:1507–12. doi: 10.1016/j.ica.2010.01.018.CrossRefGoogle Scholar
  5. 5.
    Almeida Paz FA, Klinowski J. Hydrothermal synthesis of a novel thermally stable three-dimensional ytterbium-organic framework. Chem Commun. 2003. doi: 10.1039/B302140H.
  6. 6.
    Chen W, Fukuzumi S. Ligand-dependent ultrasonic-assistant self-assemblies and photophysical properties of lanthanide nicotinic/isonicotinic complexes. Inorg Chem. 2009;48:3800–7.CrossRefGoogle Scholar
  7. 7.
    Jia G, Law GL, Wong KL, Tanner PA, Wong WT. Synthesis, crystal structures, and luminescence of organic-lanthanide complexes with nicotinate and isonicotinate ligands. Inorg Chem. 2008;47:9431–8.CrossRefGoogle Scholar
  8. 8.
    Huang L, Han L, Zhu D, Chen L, Xu Y. Hydrothermal synthesis, crystal structure and luminescence of two new 2D coordination polymers [Ln(IN)(CO3)(H2O)] (LnLa, Eu) constructed by interesting flat lanthanide carbonate layers. Inorg Chem Commun. 2012;21:80–3. doi: 10.1016/j.inoche.2012.04.018.CrossRefGoogle Scholar
  9. 9.
    Naumova MI, Manicheva EA, Geraski OA, Fedin VP. Synthesis and crystal structures of new lanthanide isonicotinates: coordination polymers and molecular complexes. Russ Chem Bull. 2009;58:1858–65.CrossRefGoogle Scholar
  10. 10.
    Hilder M, Lezhnina M, Junk PC, Kynast UH. Spectroscopic properties of lanthanoid benzene carboxylates in the solid state: Part 3. N-heteroaromatic benzoates and 2-furanates. Polyhedron. 2013;52:804–9. doi: 10.1016/j.poly.2012.07.047.CrossRefGoogle Scholar
  11. 11.
    Yan B, Zhou B. Photophysical properties of dysprosium complexes with aromatic carboxylic acids by molecular spectroscopy. J Photochem Photobiol A Chem. 2005;171:181–6.CrossRefGoogle Scholar
  12. 12.
    Ma L, Evans OR, Foxman BM, Lin W. Luminescent lanthanide coordination polymers. Inorg Chem. 1999;38:5837–40.CrossRefGoogle Scholar
  13. 13.
    Colman TAD, Gomes DJC, Caires FJ, Filho OT, da Silva RDC, Ionashiro M. Synthesis, thermal and spectroscopic study of light lanthanide nicotinate, in the solid state. Thermochim Acta. 2014;591:111–8.
  14. 14.
    Ionashiro M, Graner CAF, Netto JZ. Titulação complexométrica de lantanídeos e ítrio. Eclet Quim. 1983;8:29–32.Google Scholar
  15. 15.
    Flaschka HA. EDTA titrations. Oxford: Pergamon Press; 1964.Google Scholar
  16. 16.
    Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B. 5th ed. New York: Wiley; 1997.Google Scholar
  17. 17.
    Silverstein RM, Webster FX. Spectrometric identification of organic compounds. 6th ed. New York: Wiley; 1998.Google Scholar
  18. 18.
    Deacon GB, Phillips RJ. Relationships between the carbon–oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.
  19. 19.
    Lima LS, Caires FJ, Carvalho CT, Siqueira AB, Ionashiro M. Synthesis, characterization and thermal behaviour of solid-state compounds of light trivalent lanthanide succinates. Thermochim Acta. 2010;501:50–4. doi: 10.1016/j.tca.2010.01.001.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • W. D. G. Nunes
    • 1
  • J. A. Teixeira
    • 1
  • A. L. C. S. do Nascimento
    • 1
  • F. J. Caires
    • 2
  • E. Y. Ionashiro
    • 3
  • M. Ionashiro
    • 1
    Email author
  1. 1.Instituto de QuímicaUniversidade Estadual PaulistaAraraquaraBrazil
  2. 2.Faculdade de CiênciasUniversidade Estadual PaulistaBauruBrazil
  3. 3.Instituto de QuímicaUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations