Journal of Thermal Analysis and Calorimetry

, Volume 124, Issue 3, pp 1745–1748 | Cite as

The heat capacity and thermodynamic functions of Bi12.5Lu1.5ReO24.5 in the temperature range of 175–550 K

  • N. I. Matskevich
  • Th. Wolf
  • D. Pischur
  • S. G. Kozlova
Article

Abstract

The heat capacity of Bi12.5Lu1.5ReO24.5 was measured for the first time in the temperature range of 175–550 K. Calorimetric experiments were performed using differential scanning calorimetry (DSC). Temperature dependence of the molar heat capacity in the form Cp,mo (T) = 324.87 + 3.0307 T − 4.5672 × 10−3T2 + 2.7319 × 10−6T3 was derived from experimental data. The enthalpy and entropy increments (Hmo(T) − Hmo (298.15), Smo(T) − Smo(298.15)) were evaluated from heat capacity data (T = 175–550 K). The temperature dependences of formation enthalpy and Gibbs energy for Bi12.5Lu1.5ReO24.5 were calculated based on measured heat capacities and data on standard formation enthalpy obtained by us earlier.

Keywords

Heat capacity Bismuth rhenium oxide doped by Lu Enthalpy and entropy increments 

References

  1. 1.
    Braileanu A, Zaharescu M, Crisan D, Segal E. Solid state phase formation in the Bi2O3–PbO–CaO system. J Therm Anal Calorim. 1999;56:125–30.CrossRefGoogle Scholar
  2. 2.
    Zahariev A, Kaloyanov N, Parvanova V, Girginov C. Synthesis and thermal decomposition of new compound containing Bi(III) complex and 4-toluenesulfonate. Thermochim Acta. 2014;594:11–5.CrossRefGoogle Scholar
  3. 3.
    Sulcova P, Trojan M. The thermal synthesis of ZnO–Bi2O3 pigments. J Therm Anal Calorim. 2000;60:209–13.CrossRefGoogle Scholar
  4. 4.
    Poppl L, Szaller Z. Reactions and phases within the TeO2-rich part of the Bi2O3–TeO2 system. J Therm Anal Calorim. 2003;74:375–86.CrossRefGoogle Scholar
  5. 5.
    Sulcova P, Trojan M. Thermal synthesis of the (Bi2O3)1−x(Er2O3)x pigments. J Therm Anal Calorim. 2007;88:111–3.CrossRefGoogle Scholar
  6. 6.
    Thakur S, Pandey OP, Singh K. Influence of Ca2+ substitution on thermal, structural and conductivity behavior of Bi1−xCaxFeO3−y (0.40 < x < 0.55). J Therm Anal Calorim. 2014;118:255–62.CrossRefGoogle Scholar
  7. 7.
    Sulcova P, Vecera J, Bystrzycki P. Thermal analysis of doped Bi2O3. J Therm Anal Calorim. 2012;108:525–9.CrossRefGoogle Scholar
  8. 8.
    Punn R, Feteira AM, Sinclair DC, Greaves C. Enhanced oxide ion conductivity in stabilized δ-Bi2O3. J Am Chem Soc. 2006;128:15386–7.CrossRefGoogle Scholar
  9. 9.
    Crumpton TE, Mosselmans JFW, Greaves C. Structure and oxide ion conductivity in Bi28Re2O49, a new bismuth rhenium oxide containing tetrahedral and octahedral Re(VII). J Mater Chem. 2005;15:164–7.CrossRefGoogle Scholar
  10. 10.
    Matskevich NI, Wolf Th, Adelmann P, Bryzgalova AN. Thermodynamic characteristics of a new phase Bi12.5Ho1.5ReO24.5 by solution calorimetry. J Alloys Compd. 2014;604:325–6.CrossRefGoogle Scholar
  11. 11.
    Bryzgalova AN, Matskevich NI, Greaves C, Hervoches CH. Formation enthalpies and thermodynamics of some reactions of the Bi12.5R1.5ReO24.5 (R = Y, Nd, La) compounds. Thermochim Acta. 2011;513:124–7.CrossRefGoogle Scholar
  12. 12.
    Matskevich NI, Wolf Th, Greaves C, Bryzgalova AN. Preparation, ionic conductivity and thermochemistry of new Bi12.5Lu1.5ReO24.5 phase. J Alloys Compd. 2014;582:253–6.CrossRefGoogle Scholar
  13. 13.
    Paukov IE, Samsonenko DG, Pischur DP, Kozlova SG, Gabuda SP. Phase transitions and unusual behavior of heat capacity in metal organic framework compound Zn2(C8H4O4)2·N2(CH2)6. J Solid State Chem. 2014;220:254–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • N. I. Matskevich
    • 1
    • 2
  • Th. Wolf
    • 2
  • D. Pischur
    • 1
  • S. G. Kozlova
    • 1
  1. 1.Nikolaev Institute of Inorganic ChemistrySiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Solid State PhysicsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations