Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 125, Issue 2, pp 595–606 | Cite as

Calorimetric study of carbosilane dendrimers of the third and sixth generations with phenylethyl terminal groups

  • Semen S. Sologubov
  • Alexey V. MarkinEmail author
  • Natalia N. Smirnova
  • Yuliya A. Rybakova
  • Natalia A. Novozhilova
  • Elena A. Tatarinova
  • Aziz M. Muzafarov
Article

Abstract

In the present work, temperature dependences of heat capacities of carbosilane dendrimers of the third and sixth generations with phenylethyl terminal groups, denoted as G3[CH2CH2C6H5]32 and G6[CH2CH2C6H5]256, were measured for the first time in the temperature range from 6 to 520 K by precision adiabatic calorimetry and differential scanning calorimetry. In the above temperature range, physical transformations, such as the low-temperature anomaly (for dendrimer G3[CH2CH2C6H5]32), the glass transition (for both dendrimers), and the high-temperature relaxation transition (for dendrimer G6[CH2CH2C6H5]256), were detected, and the standard thermodynamic characteristics of the revealed transformations were determined and analyzed. The standard thermodynamic functions, heat capacity \( C_{\text{p}}^{\text{o}} (T) \), enthalpy H°(T) − H°(0), entropy S°(T) − S°(0), and Gibbs energy G°(T) − H°(0) for the range from T → 0 to 520 K, and the standard entropies of formation \( \Delta S_{\text{f}}^{\text{o}} \) of the investigated dendrimers in the devitrified state at T = 298.15 K were calculated per mole of the notional structural unit. The standard thermodynamic properties of dendrimers under study were discussed and compared with the literature data for carbosilane dendrimers with different functional terminal groups.

Keywords

Carbosilane dendrimers Adiabatic calorimetry DSC Heat capacity Glass transition Thermodynamic functions 

Notes

Acknowledgements

This work was performed with the financial support of the Ministry of Education and Science of the Russian Federation (Contract No. 4.1275.2014/K), the Russian Foundation for Basic Research (Project No. 15-03-02112), and the Grant of the President of the Russian Federation for Support of the Leading Scientific Schools (NSh-1899.2014.3).

Supplementary material

10973_2016_5301_MOESM1_ESM.doc (402 kb)
Supplementary material 1 (DOC 402 kb)

References

  1. 1.
    Fréchet JMJ, Tomalia DA. Dendrimers and other dendritic polymers. 1st ed. Chichester: Wiley; 2001.CrossRefGoogle Scholar
  2. 2.
    Majoral JP, Caminade AM. Dendrimers containing heteroatoms (Si, P, B, Ge, or Bi). Chem Rev. 1999;99:845–80.CrossRefGoogle Scholar
  3. 3.
    Medina SH, El-Sayed MEH. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev. 2009;109:3141–57.CrossRefGoogle Scholar
  4. 4.
    Grayson SM, Fréchet JMJ. Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev. 2001;101:3819–67.CrossRefGoogle Scholar
  5. 5.
    Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev. 2010;110:1857–959.CrossRefGoogle Scholar
  6. 6.
    Tekade RK, Kumar PV, Jain NK. Dendrimers in oncology: an expanding horizon. Chem Rev. 2009;109:49–87.CrossRefGoogle Scholar
  7. 7.
    Svenson S, Tomalia DA. Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev. 2012;64:102–15.CrossRefGoogle Scholar
  8. 8.
    Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev. 2005;57:2177–202.CrossRefGoogle Scholar
  9. 9.
    Niu YZ, Zhang L, Liang SJ, Wang DX, Feng SY. Synthesis of ester-capped carbosilane dendrimers via a hybrid divergent–convergent method. Chin Chem Lett. 2014;25:1419–22.CrossRefGoogle Scholar
  10. 10.
    Kandpal S, Saxena AK. Studies on the synthesis and reaction of silicone oxirane dendrimer and their thermal and rheological properties. Eur Polym J. 2014;58:115–24.CrossRefGoogle Scholar
  11. 11.
    Zhao SG, Zhou CJ, Zhang JM, Wang J, Feng SY. Investigation of allyl-capped carbosilane dendrimers used as crosslinker for silicone rubber. J Appl Polym Sci. 2006;100:1772–5.CrossRefGoogle Scholar
  12. 12.
    Markin AV, Sologubov SS, Smirnova NN, Knyazev AV, Mączka M, Ptak M, Novozhilova NA, Tatarinova EA, Muzafarov AM. Calorimetric and infrared studies of carbosilane dendrimers of the third generation with ethyleneoxide terminal groups. Thermochim Acta. 2015;617:144–51.CrossRefGoogle Scholar
  13. 13.
    Sologubov SS, Markin AV, Smirnova NN, Novozhilova NA, Tatarinova EA, Muzafarov AM. Thermodynamic properties of carbosilane dendrimers of the sixth generation with ethylene oxide terminal groups. J Phys Chem B. 2015;119:14527–35.CrossRefGoogle Scholar
  14. 14.
    Smirnova NN, Markin AV, Letyanina IA, Sologubov SS, Novozhilova NA, Tatarinova EA, Muzafarov AM. Thermodynamic properties of carbosilane dendrimers of the third and sixth generations with ethyleneoxide terminal groups. Russ J Phys Chem A. 2014;88:735–41.CrossRefGoogle Scholar
  15. 15.
    Lebedev BV, Ryabkov MV, Tatarinova EA, Rebrov EA, Muzafarov AM. Thermodynamic properties of the first to fifth generations of carbosilane dendrimers with allyl terminal groups. Russ Chem Bull. 2003;52:545–51.CrossRefGoogle Scholar
  16. 16.
    Smirnova NN, Khramova NM, Tsvetkova LYa, Tatarinova EA, Myakushev VD, Muzafarov AM, Lebedev BV. The thermodynamic properties of carbosilane dendrimers of the sixth and seventh generations with terminal allyl groups in the temperature range 6–340 K. Russ J Phys Chem A. 2004;78:1196–201.Google Scholar
  17. 17.
    Smirnova NN, Stepanova OV, Bykova TA, Markin AV, Muzafarov AM, Tatarinova EA, Myakushev VD. Thermodynamic properties of carbosilane dendrimers of the third to the sixth generations with terminal butyl groups in the range from T → 0 to 600 K. Thermochim Acta. 2006;440:188–94.CrossRefGoogle Scholar
  18. 18.
    Smirnova NN, Stepanova OV, Bykova TA, Markin AV, Tatarinova EA, Muzafarov AM. Thermodynamic properties of carbosilane dendrimers of the seventh and ninth generations with terminal butyl groups in the temperature range from T → 0 to 600 K. Russ Chem Bull. 2007;56:1991–5.CrossRefGoogle Scholar
  19. 19.
    Smirnova NN, Markin AV, Samosudova YaS, Ignat’eva GM, Muzafarov AM. Thermodynamics of a seventh generation carbosilane dendrimer with phenylic substituent on the initial branching center and terminal butyl groups. Russ J Phys Chem A. 2010;84:784–91.CrossRefGoogle Scholar
  20. 20.
    Markin AV, Samosudova YaS, Smirnova NN, Tatarinova EA, Bystrova AV, Muzafarov AM. Thermodynamics of carbosilane dendrimers with diundecylsilyl and diundecylsiloxane terminal groups. J Therm Anal Calorim. 2011;105:663–76.CrossRefGoogle Scholar
  21. 21.
    Smirnova NN, Markin AV, Samosudova YaS, Ignat’eva GM, Katarzhnova EYu, Muzafarov AM. Thermodynamics of G-3(D4) and G-6(D4) carbosilanecyclosiloxane dendrimers. Russ J Phys Chem A. 2013;87:552–9.CrossRefGoogle Scholar
  22. 22.
    Markin AV, Samosudova YaS, Smirnova NN, Sheremet’eva NA, Muzafarov AM. Thermodynamics of fluorinated derivatives of carbosilane dendrimers of high generations. Russ Chem Bull. 2011;60:2365–9.CrossRefGoogle Scholar
  23. 23.
    Novozhilova NA, Serenko OA, Roldughin VI, Askadskii AA, Muzafarov AM. Synthesis of carbosilane dendrimers with 2-phenylethyl end groups and influence of generation number on glass transition temperature of PS-based composites. Silicon. 2015;7:155–64.CrossRefGoogle Scholar
  24. 24.
    Wieser ME, Holden N, Coplen TB, Böhlke JK, Berglund M, Brand WA, De Bièvre P, Gröning M, Loss RD, Meija J, Hirata T, Prohaska T, Schoenberg R, O’Connor G, Walczyk T, Yoneda S, Zhu XK. Atomic weights of the elements 2011 (IUPAC technical report). Pure Appl Chem. 2013;85:1047–78.CrossRefGoogle Scholar
  25. 25.
    Varushchenko RM, Druzhinina AI, Sorkin EL. Low-temperature heat capacity of 1-bromoperfluorooctane. J Chem Thermodyn. 1997;29:623–37.CrossRefGoogle Scholar
  26. 26.
    Archer DG. Thermodynamic properties of synthetic sapphire (α-Al2O3), standard reference material 720 and the effect of temperature-scale differences on thermodynamic properties. J Phys Chem Ref Data. 1993;22:1441–53.CrossRefGoogle Scholar
  27. 27.
    Della Gatta G, Richardson MJ, Sarge SM, Stolen S. Standards, calibration, and guidelines in microcalorimetry. Part 2. Calibration standards for differential scanning calorimetry. Pure Appl Chem. 2006;78:1455–76.Google Scholar
  28. 28.
    Höhne GWH, Hemminger WF, Flammersheim HJ. Differential scanning calorimetry. 2nd ed. Berlin: Springer; 2003.CrossRefGoogle Scholar
  29. 29.
    Drebushchak VA. Calibration coefficient of heat-flow DSC. Part II. Optimal calibration procedure. J Therm Anal Calorim. 2005;79:213–8.CrossRefGoogle Scholar
  30. 30.
    Smirnova NN, Samosudova YaS, Markin AV, Shibaev VP, Boiko NI. Thermodynamic properties of liquid-crystalline carbosilane dendrimers of the second and the fourth generation with methoxyphenylbenzoate terminal groups. Thermochim Acta. 2015;614:226–31.CrossRefGoogle Scholar
  31. 31.
    Lorenz K, Frey H, Stühn B, Mülhaupt R. Carbosilane dendrimers with perfluoroalkyl end groups. Core–shell macromolecules with generation-dependent order. Macromolecules. 1997;30:6860–8.CrossRefGoogle Scholar
  32. 32.
    Wooley KL, Hawker CJ, Pochan JM, Fréchet JMJ. Physical properties of dendritic macromolecules: a study of glass transition temperature. Macromolecules. 1993;26:1514–9.CrossRefGoogle Scholar
  33. 33.
    Alford S, Dole M. Specific heat of synthetic high polymers. VI. A study of the glass transition in polyvinyl chloride. J Am Chem Soc. 1955;77:4774–7.CrossRefGoogle Scholar
  34. 34.
    Adam G, Gibbs JH. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys. 1965;43:139–46.CrossRefGoogle Scholar
  35. 35.
    Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43:219–56.CrossRefGoogle Scholar
  36. 36.
    Bestul AB, Chang SS. Excess entropy at glass transformation. J Chem Phys. 1964;40:3731–3.CrossRefGoogle Scholar
  37. 37.
    Mironova MV, Semakov AV, Tereshchenko AS, Tatarinova EA, Getmanova EV, Muzafarov AM, Kulichikhin VG. Rheology of carbosilane dendrimers with various types of end groups. Polym Sci Ser A. 2010;52:1156–62.CrossRefGoogle Scholar
  38. 38.
    Tande BM, Wagner NJ, Kim YH. Influence of end groups on dendrimer rheology and conformation. Macromolecules. 2003;36:4619–23.CrossRefGoogle Scholar
  39. 39.
    Tereshchenko AS, Tupitsyna GS, Tatarinova EA, Bystrova AV, Muzafarov AM, Smirnova NN, Markin AV. Carbosilane dendrimers with diundecylsilyl, diundecylsiloxane, and tetrasiloxane terminal groups: synthesis and properties. Polym Sci Ser B. 2010;52:41–8.CrossRefGoogle Scholar
  40. 40.
    Muzafarov AM, Vasilenko NG, Tatarinova EA, Ignat’eva GM, Myakushev VM, Obrezkova MA, Meshkov IB, Voronina NV, Novozhilov OV. Macromolecular nano-objects as a promising direction of polymer chemistry. Polym Sci Ser C. 2011;53:48–60.CrossRefGoogle Scholar
  41. 41.
    Debye P. Zur Theorie der spezifischen Wärmen. Ann Phys. 1912;39:789–839.CrossRefGoogle Scholar
  42. 42.
    Lebedev BV. Application of precise calorimetry in study of polymers and polymerization processes. Thermochim Acta. 1997;297:143–9.CrossRefGoogle Scholar
  43. 43.
    Cox JD, Wagman DD, Medvedev VA. CODATA key values for thermodynamics. New York: Hemisphere Publishing Corp; 1989.Google Scholar
  44. 44.
    Chase MW Jr. NIST-JANAF thermochemical tables. J Phys Chem Ref Data. 4th ed. New York: American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology; 1998.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Semen S. Sologubov
    • 1
  • Alexey V. Markin
    • 1
    Email author
  • Natalia N. Smirnova
    • 1
  • Yuliya A. Rybakova
    • 1
  • Natalia A. Novozhilova
    • 2
  • Elena A. Tatarinova
    • 2
  • Aziz M. Muzafarov
    • 2
  1. 1.Lobachevsky State University of Nizhni NovgorodNizhni NovgorodRussia
  2. 2.Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia

Personalised recommendations