Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 3, pp 2523–2530 | Cite as

Solid-state thermal and spectroscopic studies of the anti-inflammatory drug sulindac using UV–Vis, MIR, NIR, DSC, simultaneous TG–DSC, and the coupled techniques TG-EGA-MIR and DSC–optical microscopy

  • Renan B. Guerra
  • Diogo A. Gálico
  • Bruno B. C. Holanda
  • Gilbert BannachEmail author
Article

Abstract

Simultaneous thermogravimetry–differential scanning calorimetry (TG–DSC), differential scanning calorimetry–optical microscopy (DSC–optical microscopy), online coupled thermogravimetry–infrared spectroscopy evolved gas analyses (TG-EGA-MIR), and spectroscopic techniques were used to study the non-steroidal anti-inflammatory drug sulindac in polymorphic form II. The TG–DSC curves, which were performed with the aid of DSC–optical microscopy, provided information concerning the thermal stability and decomposition profiles of the compound. From the TG-EGA-MIR coupled technique, it was possible to identify formaldehyde as a volatile compound that was released during thermal decomposition. A complete spectroscopic characterization in the ultraviolet, visible, near- and middle-infrared regions was performed in order to understand the spectroscopic properties of sulindac form II.

Keywords

Sulindac Thermal behavior Spectroscopic studies Coupled TG-EGA-MIR DSC–optical microscopy 

Notes

Acknowledgements

The authors would like to thank the FAPESP (Proc. 2012/21450-1, 2011/03129-9 and 2013/04096-2) and CNPq foundations (Brazil) for their financial support.

Supplementary material

10973_2015_5228_MOESM1_ESM.tif (435 kb)
Fig. 1 S. 3D-MIR spectra Gram-Schmitt plots in an atmosphere of (a) dry air and (b) nitrogen (TIFF 434 kb)

Supplementary material 2 (WMV 3878 kb)

References

  1. 1.
    Shen TY, Witzel BE, Jones H, Linn BO, McPherson J, Greenwald R, Fordice M, Jacob A. Synthesis of a new anti-inflammatory agent, cis-5-fluoro-2-methyl-1-[p-(methylsulfinyl)benzylidenyl]-indene-3-acetic acid. Fed Proc. 1972;31:577.Google Scholar
  2. 2.
    Lenik J. Preparation and characterization of a sulindac sensor based on PVC/TOA-SUL membrane. Mater Sci Eng C. 2014;37:383–9.CrossRefGoogle Scholar
  3. 3.
    Lazzaroni M, Porro GB. Gastrointestinal side-effects of traditional non-steroidal anti-inflammatory drugs and new formulations. Aliment Pharmacol Ther. 2004;20:48–58.CrossRefGoogle Scholar
  4. 4.
    Shiff SJ, Qiao L, Tsai LL, Rigas B. Sulindac sulfide, an aspirin-like compound, inhibits proliferation, causes cell cycle quiescence, and induces apoptosis in HT-29 colon adenocarcinoma cells. J Clin Investig. 1995;96:491–503.CrossRefGoogle Scholar
  5. 5.
    Castonguay A, Rioux N. Inhibition of lung tumourigenesis by sulindac: comparison of two experimental protocols. Carcinogenesis. 1997;18:491–6.CrossRefGoogle Scholar
  6. 6.
    Scheper MA, Nikitakis NG, Chaisuparat R, Montaner S, Sauk JJ. Sulindac induces apoptosis and inhibits tumor growth in vivo in head and neck squamous cell carcinoma. Neoplasia. 2007;9:192–9.CrossRefGoogle Scholar
  7. 7.
    Wang GH, Jiang FQ, Duan YH, Zeng ZP, Chen F, Dai Y, Chen JB, Liu JX, Liu J, Zhou H, Chen HF, Zeng JZ, Su Y, Yao XS, Zhang XK. Targeting truncated retinoid X receptor-α by CF31 induces TNF-α-dependent apoptosis. Cancer Res. 2013;73:307–18.CrossRefGoogle Scholar
  8. 8.
    Coray TW. Inflammation in Alzheimer disease: Driving force, bystander or beneficial response? Nat Med. 2006;12:1005–15.Google Scholar
  9. 9.
    Tros de Ilarduya MC, Martín C, Goñi MM, Martínez-Ohárriz MC. Polymorphism of sulindac: isolation and characterization of a new polymorph and three new solvates. J Pharm Sci. 1997;86:248–51.CrossRefGoogle Scholar
  10. 10.
    Grzesiak AL, Matzger AJ. New form discovery for the analgesics flurbiprofen and sulindac facilitated by polymer-induced heteronucleation. J Pharm Sci. 2007;96:2978–86.CrossRefGoogle Scholar
  11. 11.
    Plakogiannis FM, McCauley JA. Sulindac. In: Florey K, editor. Analytical profiles of drug substances 13. London: Academic Press; 1984. p. 573–96.CrossRefGoogle Scholar
  12. 12.
    Alves GMC, Rolim LA, Neto PJR, Leite ACL, Brondani DJ, Medeiros FPM, Bieber LW, Mendoça Junior FJB. Purificação e caracterização da β-lapachona e estudo de estabilidade dos cristais em diferentes condições de armazenamento. Quím Nova. 2008;31:413–16.Google Scholar
  13. 13.
    Tita D, Jurca T, Fulias A, Marian E, Tita B. Compatibility study of the acetylsalicylic acid with different solid dosage forms excipients. J Therm Anal Calorim. 2013;112:407–19.CrossRefGoogle Scholar
  14. 14.
    Tiţa B, Marian E, Fuliaş A, Jurca T, Tiţa D. Thermal stability of piroxicam. Part 2. Kinetic study of the active substance under isothermal conditions. J Therm Anal Calorim. 2013;112:367–74.CrossRefGoogle Scholar
  15. 15.
    Hayes JA, Eccles KS, Elcoate CJ, Daly CA, Lawrence SE, Moynihan HA. Crystal polymorphism of methyl 2,3,4-tri-O-acetyl-1-O-(trichloroacetimidoyl)-α-D-glucopyranouronate. J Chem Crystallogr. 2013;43:138–43.CrossRefGoogle Scholar
  16. 16.
    Duda-Seiman C, Vlase T, Vlase G, Duda-Seiman D, Albu P, Doca N. Thermal analysis study of amlodipine as pure compound and in binary mixture. J Therm Anal Calorim. 2011;105:677–83.CrossRefGoogle Scholar
  17. 17.
    Bannach G, Cervini P, Cavalheiro ETG, Ionashiro M. Using thermal and spectroscopic data to investigate the thermal behavior of epinephrine. Thermochim Acta. 2010;499:123–7.CrossRefGoogle Scholar
  18. 18.
    Gálico DA, Holanda BBC, Guerra RB, Legendre AO, Rinaldo D, Treu-Filho O, Bannach G. Thermal and spectroscopic studies on solid ibuprofen of lighter trivalent lanthanides. Thermochim Acta. 2014;575:226–32.CrossRefGoogle Scholar
  19. 19.
    Silva ACM, Gálico DA, Guerra RB, Legendre AO, Rinaldo D, Galhiane MS, Bannach G. Study of some volatile compounds evolved from the thermal decomposition of atenolol. J Therm Anal Calorim. 2014;115:2517–20.CrossRefGoogle Scholar
  20. 20.
    Perpétuo GL, Gálico DA, Fugita RA, Castro RAE, Eusébio MES, Treu-Filho O, Silva ACM, Bannach G. Thermal behavior of some antihistamines. J Therm Anal Calorim. 2013;111:2019–28.CrossRefGoogle Scholar
  21. 21.
    Gálico DA, Perpétuo GL, Castro RAE, Treu-Filho O, Legendre AO, Galhiane MS, Bannach G. Thermoanalytical study of nimesulide and their recrystallization products obtained from solutions of several alcohols. J Therm Anal Calorim. 2014;115:2385–90.CrossRefGoogle Scholar
  22. 22.
    ASTM E 928-03 Standard Test Method for Purity by Differential Scanning Calorimetry (2003).Google Scholar
  23. 23.
    Cassel RB. Purity Determination and DSC Tzero technology, TA Instruments Internal Publication TA295a (2002).Google Scholar
  24. 24.
    Kerč J, Srčič S. Thermal analysis of glassy pharmaceuticals. Thermochim Acta. 1995;248:81–95.CrossRefGoogle Scholar
  25. 25.
    Descamps M, Aumelas A, Desprez S, Willart JF. The amorphous state of pharmaceuticals obtained or transformed by milling: Sub-Tg features and rejuvenation. J Non-Cryst Solids. 2015;407:72–80.CrossRefGoogle Scholar
  26. 26.
    Craig DQM, Royall PG, Kett VL, Hopton ML. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int J Pharm. 1999;179:179–207.CrossRefGoogle Scholar
  27. 27.
    Moynihan CT, Esteal AJ, Wilder J. Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem. 1974;78:2673–7.CrossRefGoogle Scholar
  28. 28.
    Carpentier L, Decressain R, De Gusseme A, Neves C, Descamps M. Molecular mobility in glass forming fananserine: a dielectric, NMR, and TMDSC investigation. Pharm Res. 2006;23:798–805.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Renan B. Guerra
    • 1
  • Diogo A. Gálico
    • 1
  • Bruno B. C. Holanda
    • 1
  • Gilbert Bannach
    • 1
    Email author
  1. 1.Faculdade de Ciências, Departamento de QuímicaUNESP - Univ. Estadual PaulistaBauruBrazil

Personalised recommendations