Journal of Thermal Analysis and Calorimetry

, Volume 124, Issue 2, pp 989–992 | Cite as

Thermochemical characteristics of SrCeO3 doped by Eu2O3



For the first time, dissolution enthalpies of strontium cerate doped by europium and a mixture of strontium, cerium, and europium chlorides have been measured by solution calorimetry. Using experimental data, the standard formation enthalpy of SrCe0.9Eu0.1O2.95 has been calculated as follows: Δf H° (298.15 K) = −1692.1 ± 3.9 kJ mol−1. The stabilization energy of this complex oxide has been calculated and established that its value is negative (Δst E = −36.7 ± 4.2 kJ mol−1).


Strontium cerate Formation enthalpy Solution calorimetry 



This work is supported by Karlsruhe Institute of Technology and Program of fundamental investigation of SB RAS.


  1. 1.
    Ivanov MG, Shmakov AN, Drebushchak VA, Podyacheva OYu. Two mechanisms of thermal expansion in perovskite SrCo0.6Fe0.2Nb0.2O3−z. J Therm Anal Calorim. 2010;100:79–82.CrossRefGoogle Scholar
  2. 2.
    Sulcova P, Trojan M. Thermal analysis of pigments based on CeO2. J Therm Anal Calorim. 2001;65:399–403.CrossRefGoogle Scholar
  3. 3.
    Mather GC, Islam MS. Defect and dopant properties of the SrCeO3-based proton conductor. Chem Mater. 2005;17:1736–44.CrossRefGoogle Scholar
  4. 4.
    Tsuji T, Nagano T. Electrical conduction in SrCeO3 doped with Eu2O3. Solid State Ion. 2000;136–137:179–82.CrossRefGoogle Scholar
  5. 5.
    Matskevich NI, Wolf T, Vyazovkin IV, Adelmann P. Preparation and stability of a new compound SrCe0.9Lu0.1O2.95. J Alloys Compd. 2015;628:126–9.CrossRefGoogle Scholar
  6. 6.
    Chen FL, Sorensen OT, Meng GY, Peng DK. Synthesis of Nd-doped barium cerate proton conductor from oxalate coprecipitate precursor. J Therm Anal Calorim. 1997;49:1255–61.CrossRefGoogle Scholar
  7. 7.
    Malta LFB, Cafffarena VR, Medeiros ME, Ogasawara T. TA of non-stoichiometric ceria obtained via hydrothermal synthesis. J Therm Anal Calorim. 2004;75:901–10.CrossRefGoogle Scholar
  8. 8.
    Pasierb P, Gajerski R, Osiadly M, Lacz A. Application of DTA-TG-MS for determination of chemical stability of BaCeO3-based protonic conductor. J Therm Anal Calorim. 2014;117:683–91.CrossRefGoogle Scholar
  9. 9.
    Murti PS, Krishnaiah MV. Thermal diffusivity and thermal conductivity studies on the zirconate, cerate and urinate of barium. J Therm Anal Calorim. 1991;37:2643–8.CrossRefGoogle Scholar
  10. 10.
    Li J, Yoon H, Oh TK, Wachsman ED. High temperature SrCe0.9Eu0.1O3−δ proton conducting membrane reactor for H2 production using the water-gas shift reaction. Appl Catal B Environ. 2009;92:234–9.CrossRefGoogle Scholar
  11. 11.
    Matskevich NI. Enthalpy of formation of BaCe0.9In0.1O3−δ(s). J Therm Anal Calorim. 2007;90:955–8.CrossRefGoogle Scholar
  12. 12.
    Matskevich NI, Krabbes G, Berasteque P. Thermodynamic characteristics of compounds in the Sm-Ba-Cu-O system. Thermochim Acta. 2003;397:97–101.CrossRefGoogle Scholar
  13. 13.
    Matskevich NI, Minenkov YuF, Berezovskii GA. Calorimetric study and stability of Y202 phase in the Y–Ba–Cu–O system. J Therm Anal Calorim. 2015;121:771–6.CrossRefGoogle Scholar
  14. 14.
    Matskevich NI, Wolf T, Pochivalov YI. Thermochemistry of Gd2BaCuO5 and LuBa2Cu3Ox. Inorg Chem. 2008;47:2581–4.CrossRefGoogle Scholar
  15. 15.
    Vasiliev IV, Matskevich NI. Heat equivalent of calorimeters with automatically operated adiabatic jacket. Russ J Phys Chem. 1988;62:3180–5.Google Scholar
  16. 16.
    Oleinik BI. Precision calorimetry. Moscow: Standard Edition; 1973.Google Scholar
  17. 17.
    Rossini ED. Experimental Thermochemistry. Measurement of Heats of Reaction. New York: Interscience Publishers Inc; 1956.Google Scholar
  18. 18.
    Sabbah R, Xu-wu A, Chickos JS, Planas Leitão ML, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:93–204.CrossRefGoogle Scholar
  19. 19.
    Gunter C, Pfestorf R, Rother M, Seidel J, Zimmermann R, Wolf G, Schroder V. An interlaboratory test for certification of potassium chloride as a certified reference material (CRM) for solution calorimetry. J Therm Anal Calorim. 1988;33:359–63.CrossRefGoogle Scholar
  20. 20.
    Glushko VP. Termicheskie Konstanty Veshchestv (Thermal constants of substances), vol. 10. Moscow: VINITI; 1980. p. 18.Google Scholar
  21. 21.
    Cordfunke EHP, Booij AS, Huntelaar ME. The thermochemical properties of BaCeO3 (s) and SrCeO3 (s) from T = (5 to 1500) K. J Chem Thermodyn. 1998;30:437–47.CrossRefGoogle Scholar
  22. 22.
    Glushko VP. Termicheskie Konstanty Veshchestv (Thermal constants of substances), vol. 1. Moscow: VINITI; 1965. p. 46–8.Google Scholar
  23. 23.
    Glushko VP. Termicheskie Konstanty Veshchestv (Thermal constants of substances), vol. 9. Moscow: VINITI; 1979. p. 164–6.Google Scholar
  24. 24.
    Glushko VP. Termicheskie Konstanty Veshchestv (Thermal constants of substances), vol. 8. Moscow: VINITI; 1978. p. 50–2.Google Scholar
  25. 25.
    Glushko VP. Termicheskie Konstanty Veshchestv (Thermal constants of substances), vol. 8. Moscow: VINITI; 1979. p. 106–7.Google Scholar
  26. 26.
    Shirsat AN, Kaimal KNG, Bharadwaj SR, Das D. Thermodynamic stability of Sr2CeO4. Thermochim Acta. 2006;447:101–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • N. I. Matskevich
    • 1
    • 2
  • Th. Wolf
    • 2
  • I. V. Vyazovkin
    • 1
  1. 1.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussia
  2. 2.Karlsruhe Institute of TechnologyInstitute of Solid State PhysicsKarlsruheGermany

Personalised recommendations