Journal of Thermal Analysis and Calorimetry

, Volume 124, Issue 2, pp 989–992 | Cite as

Thermochemical characteristics of SrCeO3 doped by Eu2O3

Article

Abstract

For the first time, dissolution enthalpies of strontium cerate doped by europium and a mixture of strontium, cerium, and europium chlorides have been measured by solution calorimetry. Using experimental data, the standard formation enthalpy of SrCe0.9Eu0.1O2.95 has been calculated as follows: ΔfH° (298.15 K) = −1692.1 ± 3.9 kJ mol−1. The stabilization energy of this complex oxide has been calculated and established that its value is negative (ΔstE = −36.7 ± 4.2 kJ mol−1).

Keywords

Strontium cerate Formation enthalpy Solution calorimetry 

References

  1. 1.
    Ivanov MG, Shmakov AN, Drebushchak VA, Podyacheva OYu. Two mechanisms of thermal expansion in perovskite SrCo0.6Fe0.2Nb0.2O3−z. J Therm Anal Calorim. 2010;100:79–82.CrossRefGoogle Scholar
  2. 2.
    Sulcova P, Trojan M. Thermal analysis of pigments based on CeO2. J Therm Anal Calorim. 2001;65:399–403.CrossRefGoogle Scholar
  3. 3.
    Mather GC, Islam MS. Defect and dopant properties of the SrCeO3-based proton conductor. Chem Mater. 2005;17:1736–44.CrossRefGoogle Scholar
  4. 4.
    Tsuji T, Nagano T. Electrical conduction in SrCeO3 doped with Eu2O3. Solid State Ion. 2000;136–137:179–82.CrossRefGoogle Scholar
  5. 5.
    Matskevich NI, Wolf T, Vyazovkin IV, Adelmann P. Preparation and stability of a new compound SrCe0.9Lu0.1O2.95. J Alloys Compd. 2015;628:126–9.CrossRefGoogle Scholar
  6. 6.
    Chen FL, Sorensen OT, Meng GY, Peng DK. Synthesis of Nd-doped barium cerate proton conductor from oxalate coprecipitate precursor. J Therm Anal Calorim. 1997;49:1255–61.CrossRefGoogle Scholar
  7. 7.
    Malta LFB, Cafffarena VR, Medeiros ME, Ogasawara T. TA of non-stoichiometric ceria obtained via hydrothermal synthesis. J Therm Anal Calorim. 2004;75:901–10.CrossRefGoogle Scholar
  8. 8.
    Pasierb P, Gajerski R, Osiadly M, Lacz A. Application of DTA-TG-MS for determination of chemical stability of BaCeO3-based protonic conductor. J Therm Anal Calorim. 2014;117:683–91.CrossRefGoogle Scholar
  9. 9.
    Murti PS, Krishnaiah MV. Thermal diffusivity and thermal conductivity studies on the zirconate, cerate and urinate of barium. J Therm Anal Calorim. 1991;37:2643–8.CrossRefGoogle Scholar
  10. 10.
    Li J, Yoon H, Oh TK, Wachsman ED. High temperature SrCe0.9Eu0.1O3−δ proton conducting membrane reactor for H2 production using the water-gas shift reaction. Appl Catal B Environ. 2009;92:234–9.CrossRefGoogle Scholar
  11. 11.
    Matskevich NI. Enthalpy of formation of BaCe0.9In0.1O3−δ(s). J Therm Anal Calorim. 2007;90:955–8.CrossRefGoogle Scholar
  12. 12.
    Matskevich NI, Krabbes G, Berasteque P. Thermodynamic characteristics of compounds in the Sm-Ba-Cu-O system. Thermochim Acta. 2003;397:97–101.CrossRefGoogle Scholar
  13. 13.
    Matskevich NI, Minenkov YuF, Berezovskii GA. Calorimetric study and stability of Y202 phase in the Y–Ba–Cu–O system. J Therm Anal Calorim. 2015;121:771–6.CrossRefGoogle Scholar
  14. 14.
    Matskevich NI, Wolf T, Pochivalov YI. Thermochemistry of Gd2BaCuO5 and LuBa2Cu3Ox. Inorg Chem. 2008;47:2581–4.CrossRefGoogle Scholar
  15. 15.
    Vasiliev IV, Matskevich NI. Heat equivalent of calorimeters with automatically operated adiabatic jacket. Russ J Phys Chem. 1988;62:3180–5.Google Scholar
  16. 16.
    Oleinik BI. Precision calorimetry. Moscow: Standard Edition; 1973.Google Scholar
  17. 17.
    Rossini ED. Experimental Thermochemistry. Measurement of Heats of Reaction. New York: Interscience Publishers Inc; 1956.Google Scholar
  18. 18.
    Sabbah R, Xu-wu A, Chickos JS, Planas Leitão ML, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:93–204.CrossRefGoogle Scholar
  19. 19.
    Gunter C, Pfestorf R, Rother M, Seidel J, Zimmermann R, Wolf G, Schroder V. An interlaboratory test for certification of potassium chloride as a certified reference material (CRM) for solution calorimetry. J Therm Anal Calorim. 1988;33:359–63.CrossRefGoogle Scholar
  20. 20.
    Glushko VP. Termicheskie Konstanty Veshchestv (Thermal constants of substances), vol. 10. Moscow: VINITI; 1980. p. 18.Google Scholar
  21. 21.
    Cordfunke EHP, Booij AS, Huntelaar ME. The thermochemical properties of BaCeO3 (s) and SrCeO3 (s) from T = (5 to 1500) K. J Chem Thermodyn. 1998;30:437–47.CrossRefGoogle Scholar
  22. 22.
    Glushko VP. Termicheskie Konstanty Veshchestv (Thermal constants of substances), vol. 1. Moscow: VINITI; 1965. p. 46–8.Google Scholar
  23. 23.
    Glushko VP. Termicheskie Konstanty Veshchestv (Thermal constants of substances), vol. 9. Moscow: VINITI; 1979. p. 164–6.Google Scholar
  24. 24.
    Glushko VP. Termicheskie Konstanty Veshchestv (Thermal constants of substances), vol. 8. Moscow: VINITI; 1978. p. 50–2.Google Scholar
  25. 25.
    Glushko VP. Termicheskie Konstanty Veshchestv (Thermal constants of substances), vol. 8. Moscow: VINITI; 1979. p. 106–7.Google Scholar
  26. 26.
    Shirsat AN, Kaimal KNG, Bharadwaj SR, Das D. Thermodynamic stability of Sr2CeO4. Thermochim Acta. 2006;447:101–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • N. I. Matskevich
    • 1
    • 2
  • Th. Wolf
    • 2
  • I. V. Vyazovkin
    • 1
  1. 1.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussia
  2. 2.Karlsruhe Institute of TechnologyInstitute of Solid State PhysicsKarlsruheGermany

Personalised recommendations