Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 124, Issue 1, pp 205–214 | Cite as

Experimental investigation of pressure drop and heat transfer performance of amino acid-functionalized MWCNT in the circular tube

  • Ebrahim Hosseinipour
  • Saeed Zeinali Heris
  • Mehdi Shanbedi
Article

Abstract

In this research, an experimental study was conducted to clarify the forced convective heat transfer coefficient and pressure drop of water-based nanofluid including multi-walled carbon nanotubes (MWCNT) flowing through a horizontal circular tube. In order to prepare a stable colloidal suspension in aqueous media, two methods of non-covalent and covalent functionalizations were used by gum Arabic (GA) and arginine (Arg), respectively. Both nanofluids of MWCNT-GA/water and MWCNT-Arg/water were prepared at concentrations of 0.1 and 0.2 mass%, and they were investigated in a laminar regime (Re = 800–2000) at constant heat flux. A significant increase in the convective heat transfer coefficient with the addition of the Arg-functionalized MWCNT was the main achievement. Also, the convective heat transfer coefficient increased with increasing the nanofluid concentration and Reynolds number. Note that the thermal performance of MWCNT-Arg/water nanofluid is better than MWCNT-GA/water nanofluid. In addition, the low mass concentration of MWCNT had an insignificant effect on the pressure drop enhancement. Performance index results also showed that both prepared nanofluids are appropriate alternative for heat transfer equipment.

Keywords

Nanofluid Carbon nanotubes Functionalization Heat transfer coefficient Arginine 

List of symbols

A

Surface area (m2)

Cp

Specific heat (J kg−1 K−1)

D

Tube diameter (m)

E

Error

h

Heat transfer coefficient (W m−2 k−1)

I

Current (A)

k

Thermal conductivity (W m−1 k−1)

L

Tube length (m)

\( \dot{m} \)

Mass flow rate (kg s−1)

Nu

Nusselt number

Pr

Prandtl number

\( q^{{\prime \prime }} \)

Heat flux (W m−2)

Q

Heat transfer rate (W)

Re

Reynolds number

T

Temperature (°C)

U

Velocity (m s−1)

V

Voltmeter (V)

x

Axial distance (m)

Greek letters

ΔP

Pressure drop

ε

Performance index

μ

Fluid viscosity (Pa s)

ρ

Density (kg m−3)

φ

Volume fraction

Subscripts

bf

Base fluid

in

Inlet

m

Bulk

nf

Nanofluid

np

Nanoparticles

s

Wall

Abbreviations

MWCNT

Multi-walled carbon nanotubes

MWCNT-Arg

Functionalization of MWCNT with Arginine

Notes

Acknowledgements

The authors are grateful to Iran Nanotechnology Initiative Council for financial support.

Supplementary material

10973_2015_5137_MOESM1_ESM.docx (136 kb)
Supplementary material 1 (DOCX 136 kb)

References

  1. 1.
    Amiri A, Sadri R, Shanbedi M, Ahmadi G, Chew B, Kazi S, et al. Performance dependence of thermosyphon on the functionalization approaches: an experimental study on thermo-physical properties of graphene nanoplatelet-based water nanofluids. Energy Convers Manag. 2015;92:322–30.CrossRefGoogle Scholar
  2. 2.
    Amiri A, Sadri R, Shanbedi M, Ahmadi G, Kazi S, Chew B, et al. Synthesis of ethylene glycol-treated Graphene Nanoplatelets with one-pot, microwave-assisted functionalization for use as a high performance engine coolant. Energy Convers Manag. 2015;101:767–77.CrossRefGoogle Scholar
  3. 3.
    Amiri A, Shanbedi M, Yarmand H, Arzani HK, Gharehkhani S, Montazer E, et al. Laminar convective heat transfer of hexylamine-treated MWCNTs-based turbine oil nanofluid. Energy Convers Manag. 2015;105:355–67.CrossRefGoogle Scholar
  4. 4.
    Beheshti A, Shanbedi M, Heris SZ. Heat transfer and rheological properties of transformer oil-oxidized MWCNT nanofluid. J Therm Anal Calorim. 2014;118(3):1451–60.CrossRefGoogle Scholar
  5. 5.
    Hemmat-Esfe M, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119(3):1817–24.CrossRefGoogle Scholar
  6. 6.
    Barbés B, Páramo R, Blanco E, Casanova C. Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J Therm Anal Calorim. 2014;115(2):1883–91.CrossRefGoogle Scholar
  7. 7.
    Barbés B, Páramo R, Blanco E, Pastoriza-Gallego M, Piñeiro M, Legido J, et al. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim. 2013;111(2):1615–25.CrossRefGoogle Scholar
  8. 8.
    Hemmat-Esfe M, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of Mgo–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119(2):1205–13.CrossRefGoogle Scholar
  9. 9.
    Hemmat-Esfe M, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids. J Therm Anal Calorim. 2014;117(2):675–81.CrossRefGoogle Scholar
  10. 10.
    Hosseini SM, Moghadassi AR, Henneke D, Elkamel A. The thermal conductivities enhancement of mono ethylene glycol and paraffin fluids by adding β-SiC nanoparticles. J Therm Anal Calorim. 2010;101(1):113–8.CrossRefGoogle Scholar
  11. 11.
    Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.CrossRefGoogle Scholar
  12. 12.
    Xuan Y, Li Q. Investigation on Convective Heat Transfer and Flow Features of Nanofluids. J Heat Transfer. 2003;125(1):151–5.CrossRefGoogle Scholar
  13. 13.
    Heris SZ, Nasr-Esfahany M, Etemad SG. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow. 2007;28(2):203–10.CrossRefGoogle Scholar
  14. 14.
    Duangthongsuk W, Wongwises S. Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf. 2009;52(7):2059–67.CrossRefGoogle Scholar
  15. 15.
    Amiri A, Sadri R, Ahmadi G, Chew BT, Kazi SN, Shanbedi M, et al. Synthesis of polyethylene glycol-functionalized multi-walled carbon nanotubes with a microwave-assisted approach for improved heat dissipation. RSC Adv. 2015;5(45):35425–34.CrossRefGoogle Scholar
  16. 16.
    Amiri A, Shanbedi M, Amiri H, Zeinali Heris S, Kazi SN, Chew BT, et al. Pool boiling heat transfer of CNT/water nanofluids. Appl Therm Eng. 2014;71(1):450–9.CrossRefGoogle Scholar
  17. 17.
    Amiri A, Shanbedi M, Savari M, Chew BT, Kazi SN. Cadmium ion sorption from aqueous solutions by high surface area ethylenediaminetetraacetic acid- and diethylene triamine pentaacetic acid-treated carbon nanotubes. RSC Adv. 2015;5(87):71144–52.CrossRefGoogle Scholar
  18. 18.
    Shanbedi M, Heris SZ, Baniadam M, Amiri A, Maghrebi M. Investigation of heat-transfer characterization of EDA-MWCNT/DI-water nanofluid in a two-phase closed thermosyphon. Ind Eng Chem Res. 2012;51(3):1423–8.CrossRefGoogle Scholar
  19. 19.
    Shanbedi M, Heris SZ, Amiri A, Baniadam M. Improvement in heat transfer of a two-phased closed thermosyphon using silver-decorated MWCNT/water. J Dispers Sci Technol. 2014;35(8):1086–96.CrossRefGoogle Scholar
  20. 20.
    Shanbedi M, Heris SZ, Baniadam M, Amiri A. The effect of multi-walled carbon nanotube/water nanofluid on thermal performance of a two-phase closed thermosyphon. Exp Heat Transf. 2013;26(1):26–40.CrossRefGoogle Scholar
  21. 21.
    Shanbedi M, Heris SZ, Maskooki A. Experimental investigation of stability and thermophysical properties of carbon nanotubes suspension in the presence of different surfactants. J Therm Anal Calorim. 2015;120(2):1193–201.CrossRefGoogle Scholar
  22. 22.
    Shanbedi M, Heris SZ, Maskooki A, Eshghi H. Statistical analysis of laminar convective heat transfer of MWCNT-deionized water nanofluid using the response surface methodology. Numer Heat Transf A Appl. 2015;68(4):454–69.CrossRefGoogle Scholar
  23. 23.
    Błachnio M, Staszczuk P, Grodzicka G. Adsorption and porosity properties of pure and modified carbon nanotube surfaces. J Therm Anal Calorim. 2008;94(3):641–8.CrossRefGoogle Scholar
  24. 24.
    Zhang F, Li Q, Liu Y, Zhang S, Wu C, Guo W. Improved thermal conductivity of polycarbonate composites filled with hybrid exfoliated graphite/multi-walled carbon nanotube fillers. J Therm Anal Calorim. 2015. doi: 10.1007/s10973-015-4903-7.
  25. 25.
    Staszczuk P, Rycyk M. Studies of adsorption and total heterogeneity properties of pure and modified carbon nanotube surfaces. J Therm Anal Calorim. 2013;114(3):1125–33.CrossRefGoogle Scholar
  26. 26.
    Kiricsi I. Thermal behavior of multiwall carbon nanotube/zeolite nanocomposites. J Therm Anal Calorim. 2005;79(3):567–72.CrossRefGoogle Scholar
  27. 27.
    Upadhyay AN, Tiwari RS, Singh K. Effect of carbon nanotube additive on the structural and thermal properties of Se85Te10Ag5 glassy alloy. J Therm Anal Calorim. 2015;122(2):547–52.CrossRefGoogle Scholar
  28. 28.
    Hemmat-Esfe M, Naderi A, Akbari M, Afrand M, Karimipour A. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim. 2015;121(3):1273–8.CrossRefGoogle Scholar
  29. 29.
    Abbasi S, Zebarjad S, Baghban S, Youssefi A, Ekrami-Kakhki M-S. Experimental investigation of the rheological behavior and viscosity of decorated multi-walled carbon nanotubes with TiO2 nanoparticles/water nanofluids. J Therm Anal Calorim. 2015. doi: 10.1007/s10973-015-4878-4.Google Scholar
  30. 30.
    Liu L, Zhang S, Shi B, Mai D, Du X, Lin B. Synthesis and thermal analysis of methacrylate ester-based linear triblock copolymers-grafted multiwalled carbon nanotubes. J Therm Anal Calorim. 2015;119(3):2029–37.CrossRefGoogle Scholar
  31. 31.
    Faulkner DJ, Rector DR, Davidson JJ, Shekarriz R, editors. Enhanced heat transfer through the use of nanofluids in forced convection. In: Proceedings of the ASME international mechanical engineering congress and exposition, California; 2004.Google Scholar
  32. 32.
    Amrollahi A, Rashidi A, Lotfi R, Emami-Meibodi M, Kashefi K. Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region. Int Commun Heat Mass Transfer. 2010;37(6):717–23.CrossRefGoogle Scholar
  33. 33.
    Wang J, Zhu J, Zhang X, Chen Y. Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows. Exp Thermal Fluid Sci. 2013;44:716–21.CrossRefGoogle Scholar
  34. 34.
    Koós AA, Horváth ZE, Osváth Z, Tapasztó L, Niesz K, Kónya Z, et al. STM investigation of carbon nanotubes connected by functional groups. Mater Sci Eng, C. 2003;23(6–8):1007–11.CrossRefGoogle Scholar
  35. 35.
    Zardini HZ, Amiri A, Shanbedi M, Maghrebi M, Baniadam M. Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids Surf B. 2012;92:196–202.CrossRefGoogle Scholar
  36. 36.
    Santangelo S, Messina G, Faggio G, Abdul-Rahim S, Milone C. Effect of sulphuric–nitric acid mixture composition on surface chemistry and structural evolution of liquid-phase oxidised carbon nanotubes. J Raman Spectrosc. 2012;43(10):1432–42.CrossRefGoogle Scholar
  37. 37.
    Allen CL, Chhatwal AR, Williams JM. Direct amide formation from unactivated carboxylic acids and amines. Chem Commun. 2012;48(5):666–8.CrossRefGoogle Scholar
  38. 38.
    Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571.CrossRefGoogle Scholar
  39. 39.
    Holman JD. Experimental methods for engineers. 5th ed. New York: McGrow-Hill; 1989.Google Scholar
  40. 40.
    Amiri A, Zardini HZ, Shanbedi M, Maghrebi M, Baniadam M, Tolueinia B. Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion. Mater Lett. 2012;72:153–6.CrossRefGoogle Scholar
  41. 41.
    Amiri A, Memarpoor-Yazdi M, Shanbedi M, Eshghi H. Influence of different amino acid groups on the free radical scavenging capability of multi walled carbon nanotubes. J Biomed Mater Res, Part A. 2013;101(8):2219–28.CrossRefGoogle Scholar
  42. 42.
    Heris SZ, Fallahi M, Shanbedi M, Amiri A. Heat transfer performance of two-phase closed thermosyphon with oxidized CNT/water nanofluids. Heat Mass Transf. 2015. doi: 10.1007/s00231-015-1548-9.Google Scholar
  43. 43.
    Shah R, editor. Thermal entry length solutions for the circular tube and parallel plates. In: Proceedings of the 3rd national heat mass transfer conference. Volume; 1975; Indian Institute of Technology, Bombay.Google Scholar
  44. 44.
    Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49(1):240–50.CrossRefGoogle Scholar
  45. 45.
    Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf. 2009;52(21):5090–101.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Ebrahim Hosseinipour
    • 1
  • Saeed Zeinali Heris
    • 1
  • Mehdi Shanbedi
    • 1
  1. 1.Department of Chemical Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations