Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 3, pp 2313–2319 | Cite as

Thermal investigation of acetochlor adsorption on inorganic- and organic-modified montmorillonite

  • Zorica P. Tomić
  • Lazar Kaluđerović
  • Nataša Nikolić
  • Smilja Marković
  • Petre Makreski
Article

Abstract

Results presented in this paper are pioneering attempt toward better understanding of the thermal stability of acetochlor sorption in inorganic and organic montmorillonites. Changes in surface properties of acetochlor adsorbed on montmorillonites and montmorillonites modified with hexadecyltrimethylammonium bromide have been investigated by thermogravimetry, derivative thermogravimetry and infrared spectroscopy. The mass loss, as a result of the heating treatment, indicates release of free water, transformation of hydrophilic to hydrophobic surface, the release of acetochlor sorbed on the montmorillonite, the release of acetochlor sorbed on the montmorillonite and dehydroxylation of the structural OH units.

Keywords

Organic and inorganic montmorillonite Herbicide Adsorption Acetochlor Thermal analysis 

Notes

Acknowledgements

This work was supported by the Ministry of Science and Technological Development of Serbia (Project No. 176010) and by Ministry of Education and Science of Macedonia.

References

  1. 1.
    Bakhtiary S, Shirvani M, Shariatmadari H. Adsorption–desorption behavior of 2,4-D on NCP-modified bentonite and zeolite: implications for slow-release herbicide formulations. Chemosphere. 2013;90:699–705.CrossRefGoogle Scholar
  2. 2.
    Zheng H, Ye C. Adsorption and mobility of acetochlor and butachlor on soil. Bull Environ Contam Toxicol. 2002;68:509–16.CrossRefGoogle Scholar
  3. 3.
    Li J, Li Y, Dong H. Controlled release of herbicide acetochlor from clay/carboxylmethylcellulose gel formulations. J Agric Food Chem. 2008;56:1336–42.CrossRefGoogle Scholar
  4. 4.
    Barbash JE, Thelin GP, Kolpin DW, Gilliom RJ. Major herbicides in ground water: results from the national water-quality assessment. J Environ Qual. 2001;30:831–45.CrossRefGoogle Scholar
  5. 5.
    Nemeth-Konda L, Füleky G, Morovjan G, Csokan P. Sorption behaviour of acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil. Chemosphere. 2002;48:545–55.CrossRefGoogle Scholar
  6. 6.
    Céspedes FF, Sánchez MV, García SP, Pérez MF. Modifying sorbents in controlled release formulations to prevent herbicides pollution. Chemosphere. 2007;69:785–94.CrossRefGoogle Scholar
  7. 7.
    Li J, Li Y, Dong H. Controlled release of herbicide acetochlor from clay/carboxylmethylcellulose gel formulations. J Agric Food Chem. 2008;56:1336–42.CrossRefGoogle Scholar
  8. 8.
    Hiller E, Čerňajńský S, Krascsenits Z, Milička J. Effect of soil and sediment composition on acetochlor sorption and desorption. Environ Sci Pollut Res. 2009;16:546–54.CrossRefGoogle Scholar
  9. 9.
    Celis R, Hermosín MC, Carrizosa MJ, Cornejo J. Inorganic and organic clays as carriers for controlled release of the herbicide hexazinone. J Agric Food Chem. 2002;50:2324–30.CrossRefGoogle Scholar
  10. 10.
    Tomić ZP, Ašanin D, Antić-Mladenović S, Poharc-Logar V, Makreski P. NIR and MIR spectroscopic characteristics of hydrophilic and hydrophobic bentonite treated with sulphuric acid. Vib Spectrosc. 2012;58:95–103.CrossRefGoogle Scholar
  11. 11.
    Sanchez-Camazano M, Sanchez-Martin MJ. Interaction of metamitron and metolachlor with organic and inorganic smectites. Toxicol Environ Chem. 1996;56:11–21.CrossRefGoogle Scholar
  12. 12.
    Tomić ZP, Ašanin D, Đurović R, Đorđević A, Makreski P. Near-infrared spectroscopy study for determination of adsorbed acetochlor in the organic and inorganic bentonites. Spectrochim Acta A. 2012;98:47–52.CrossRefGoogle Scholar
  13. 13.
    Vecchio S. Contribution thermal analysis to the description of transport phenomena of pesticides. Vaporization enthalpies of two acetanilide pesticides. J Therm Anal Calorim. 2007;87:79–83.CrossRefGoogle Scholar
  14. 14.
    Park Y, Ayoko GA, Kristof J, Erzsébet Horváth, Ray LF. A thermoanalytical assessment of an organoclay. J Therm Anal Calorim. 2012;107:1137–42.CrossRefGoogle Scholar
  15. 15.
    Celis R, Trigo C, Facenda G, Hermosín MC, Cornejo J. Selective modification of clay minerals for the adsorption of herbicides widely used in olive groves. J Agric Food Chem. 2007;55:6650–8.CrossRefGoogle Scholar
  16. 16.
    Nasser A, Gal M, Gerstl Z, Mingelgrin U, Yariv S. Adsorption of alachlor by montmorillonites. J Therm Anal Calorim. 1997;50:257–68.CrossRefGoogle Scholar
  17. 17.
    Tomić ZP, Logar VP, Babić BM, Rogan JR, Makreski P. Comparison of structural, textural and thermal characteristics of pure and acid treated bentonites from Aleksinac and Petrovac (Serbia). Spectrochim Acta A. 2011;82:389–95.CrossRefGoogle Scholar
  18. 18.
    Elkhalifah Ali EI, Maitra S, Bustam MA, Murugesan T. Thermogravimetric analysis of different molar mass ammonium cations intercalated different cationic forms of montmorillonite. J Therm Anal Calorim. 2012;110:765–71.CrossRefGoogle Scholar
  19. 19.
    Hrachová J, Billik P, Fajnor ŠV. Influence of organic surfactants on structural stability of mechanochemically treated bentonite. J Therm Anal Calorim. 2010;101:161–8.CrossRefGoogle Scholar
  20. 20.
    Xi Y, Martens W, He H, Frost RL. Thermogravimetric analysis of organoclays intercalated with the surfactant octadecyltrimethylammonium bromide. J Therm Anal Calorim. 2005;81:91–7.CrossRefGoogle Scholar
  21. 21.
    Lapides I, Borisover M, Yariv S. Thermal analysis of hexadecyltrimethylammonium–montmorillonites. Part 1. Thermogravimetry, carbon and hydrogen analysis and thermo-IR spectroscopy analysis. J Therm Anal Calorim. 2011;105:921–9.CrossRefGoogle Scholar
  22. 22.
    Zhou Q, Frost RL, He H, Xi Y. Changes in the surfaces of adsorbed para-nitrophenol on HDTMA organoclay—the XRD and TG study. J Colloid Interface Sci. 2007;307:50–5.CrossRefGoogle Scholar
  23. 23.
    Ni R, Huang Y, Yao C. Thermogravimetric analysis of organoclays intercalated with the gemini surfactants. J Therm Anal Calorim. 2009;96:943–7.CrossRefGoogle Scholar
  24. 24.
    Janniche GS, Mouvet C, Albrechtsen HJ. Acetochlor sorption and degradation in limestone subsurface and aquifers. Pest Manag Sci. 2010;66:1287–97.CrossRefGoogle Scholar
  25. 25.
    Li Z, Jiang W-T. A thermogravimetric investigation of alkylammonium intercalation into rectorite. Thermochim Acta. 2009;483:58–65.CrossRefGoogle Scholar
  26. 26.
    Chen D, Zhu JX, Yuan P, Yang SJ, Chen TH, He HP. Preparation and characterization of anion-cation surfactants modified montmorillonite. J Therm Anal Calorim. 2008;94:841–8.CrossRefGoogle Scholar
  27. 27.
    He H, Ding Z, Zhu J, Yuan P, Xi Y, Yang D, Frost LR. Thermal characterization of surfactant-modified montmorillonites. Clays Clay Miner. 2005;53:287–93.CrossRefGoogle Scholar
  28. 28.
    Park Y, Ayoko GA, Kristof J, Horváth E, Frost RL. A thermoanalytical assessment of an organoclay. J Therm Anal Calorim. 2012;107:1137–42.CrossRefGoogle Scholar
  29. 29.
    Zaghouane-Boudiaf H, Boutahala M. Preparation and characterization of organo-montmorillonites. Application in adsorption of the 2,4,5-trichlorophenol from aqueous solution. Adv Powder Technol. 2011;22:735–40.CrossRefGoogle Scholar
  30. 30.
    Dweck J. Qualitative and quantitative characterization of Brazilian natural and organophilic clays by thermal analysis. J Therm Anal Calorim. 2008;92:129–35.CrossRefGoogle Scholar
  31. 31.
    Ganguly S, Dana K, Ghatak S. Thermogravimetric study of n-alkylammonium-intercalated montmorillonites of different cation exchange capacity. J Therm Anal Calorim. 2010;100:71–8.CrossRefGoogle Scholar
  32. 32.
    Xi Y, Ding Z, He H, Frost RL. Structure of organoclays—an X-ray diffraction and thermogravimetric analysis study. J Colloid Interface Sci. 2004;277:116–20.CrossRefGoogle Scholar
  33. 33.
    Liu W, Liu H, Zheng W, Lu J. Adsorption of chloroacetanilide herbicides on soil (I). Structural influence of chloroacetanilide herbicide for their adsorption on soils and its components. J Environ Sci. 2001;13:37–45.Google Scholar
  34. 34.
    El-Nahhal Y, Nir S, Serban C, Rabinovitz O, Rubin B. Organo-clay formulation of acetochlor for reduced movement in soil. J Agric Food Chem. 2001;49:5364–71.CrossRefGoogle Scholar
  35. 35.
    Liu W, Gan J, Yates SR. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays. J Agric Food Chem. 2002;50:4003–8.CrossRefGoogle Scholar
  36. 36.
    Tomić ZP, Ašanin DP, Đurović-Pejčev R, Đorđević A, Makreski P. Adsorption of acetochlor herbicide on inorganic- and organic-modified bentonite monitored by mid-infrared spectroscopy and batch adsorption. Spectrosc Lett. 2015;48:685–90.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Zorica P. Tomić
    • 1
  • Lazar Kaluđerović
    • 1
  • Nataša Nikolić
    • 1
  • Smilja Marković
    • 2
  • Petre Makreski
    • 3
  1. 1.Faculty of AgricultureUniversity of BelgradeBelgradeRepublic of Serbia
  2. 2.Institute of Technical Science of SASABelgradeRepublic of Serbia
  3. 3.Institute of Chemistry, Faculty of Natural Sciences and MathematicsSS. Cyril and Methodius UniversitySkopjeRepublic of Macedonia

Personalised recommendations