Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 2, pp 1685–1694 | Cite as

Intrinsic kinetics of CO2 gasification of a Victorian coal char

  • Kazi Bayzid Kabir
  • Arash Tahmasebi
  • Sankar Bhattacharya
  • Jianglong Yu


CO2 gasification of Victorian (Morwell) brown coal char was studied using a thermogravimetric analyser (TG). Gasification kinetics of demineralised, Ca-loaded, and Fe-loaded Morwell char were also studied. The grain model and random pore model were used to fit the gasification data. The random pore model fitted the experimental data better than the grain model. The activation energy was 189.05 kJ mol−1 for the CO2 gasification of Morwell coal char. With 2 % Ca loading, the activation energy increased to 204.53 kJ mol−1 due to lowering of the surface area. However, an order of magnitude increase in the pre-exponential factor indicated an increase in active reaction sites for the 2 % Ca-loaded sample, resulting in a net increase in gasification rate. 5 % Ca loading and 2 % Fe loading proved to be less effective in increasing the gasification rate. Analysis of the TG outlet gas also proved the effectiveness of 2 % Ca loading as a gasification catalyst.


Victorian brown coal Morwell coal char Thermogravimetric analysis Gasification kinetics 


  1. 1.
    Bell DA, Towler BF. Coal gasification and its application. Boston: William Andrew Publishing; 2011.Google Scholar
  2. 2.
    Tomaszewicz M, Łabojko G, Tomaszewicz G, Kotyczka-Morańska M. The kinetics of CO2 gasification of coal chars. J Therm Anal Calorim. 2013;113(3):1327–35. doi: 10.1007/s10973-013-2961-2.CrossRefGoogle Scholar
  3. 3.
    Chmielniak T, Sciazko M, Tomaszewicz G, Tomaszewicz M. Pressurized CO2-enhanced gasification of coal. J Therm Anal Calorim. 2014;117(3):1479–88. doi: 10.1007/s10973-014-3879-z.CrossRefGoogle Scholar
  4. 4.
    Zhao H, Cao Y, Orndorff W, Pan W-P. Gasification characteristics of coal char under CO2 atmosphere. J Therm Anal Calorim. 2014;116(3):1267–72. doi: 10.1007/s10973-013-3627-9.CrossRefGoogle Scholar
  5. 5.
    Walker PL Jr, Rusinko F Jr, Austin LG. Gas reactions of carbon. In: Selwood DD, Eley PWS, Paul BW, editors. Advances in catalysis. New York: Academic Press; 1959. p. 133–221.Google Scholar
  6. 6.
    Radovic LR. Catalysis in coal and carbon gasification. Handbook of heterogeneous catalysis. Hoboken: Wiley; 2008.Google Scholar
  7. 7.
    Ohtsuka Y, Tomita A. Calcium catalysed steam gasification of Yallourn brown coal. Fuel. 1986;65(12):1653–7. doi: 10.1016/0016-2361(86)90264-4.CrossRefGoogle Scholar
  8. 8.
    Tomita A, Ohtsuka Y, Tamai Y. Low temperature gasification of brown coals catalysed by nickel. Fuel. 1983;62(2):150–4. doi: 10.1016/0016-2361(83)90187-4.CrossRefGoogle Scholar
  9. 9.
    Tomita A, Tamai Y. Low-temperature gasification of Yallourn coal catalysed by nickel. Fuel. 1981;60(10):992–4. doi: 10.1016/0016-2361(81)90099-5.CrossRefGoogle Scholar
  10. 10.
    Takarada T, Tamai Y, Tomita A. Reactivities of 34 coals under steam gasification. Fuel. 1985;64(10):1438–42. doi: 10.1016/0016-2361(85)90347-3.CrossRefGoogle Scholar
  11. 11.
    Ohtsuka Y, Tamai Y, Tomita A. Iron-catalyzed gasification of brown coal at low temperatures. Energ Fuels. 1987;1(1):32–6. doi: 10.1021/ef00001a006.CrossRefGoogle Scholar
  12. 12.
    Ohtsuka Y, Asami K. Steam gasification of low-rank coals with a chlorine-free iron catalyst from ferric chloride. Ind Eng Chem Res. 1991;30(8):1921–6. doi: 10.1021/ie00056a038.CrossRefGoogle Scholar
  13. 13.
    Asami K, Ohtsuka Y. Highly active iron catalysts from ferric chloride for the steam gasification of brown coal. Ind Eng Chem Res. 1993;32(8):1631–6. doi: 10.1021/ie00020a014.CrossRefGoogle Scholar
  14. 14.
    Ma S, Hill JO, Heng S. A thermal analysis study of the pyrolysis of Victorian brown coal. J Therm Anal. 1989;35(3):977–88. doi: 10.1007/BF02057254.CrossRefGoogle Scholar
  15. 15.
    Ma S, Hill JO, Heng S. A thermal analysis study of the combustion characteristics of Victorian brown coals. J Therm Anal. 1989;35(6):1985–96. doi: 10.1007/BF01911681.CrossRefGoogle Scholar
  16. 16.
    Ma S, Hill JO, Heng S. A thermal analysis study of the oxidation of brown coal chars. J Therm Anal. 1989;35(5):1611–9. doi: 10.1007/BF01912936.CrossRefGoogle Scholar
  17. 17.
    Hill JO, Ma S, Heng S. Thermal analysis of Australian coals—a short review. J Therm Anal. 1989;35(6):2009–24. doi: 10.1007/BF01911683.CrossRefGoogle Scholar
  18. 18.
    Ma S, Hill JO, Heng S. A kinetic analysis of the pyrolysis of some australian coals by non-isothermal thermogravimetry. J Therm Anal. 1991;37(6):1161–77. doi: 10.1007/BF01913852.CrossRefGoogle Scholar
  19. 19.
    Yeasmin H. Measurements and modelling of kinetics of devolatilisation of low-rank coal at elevated pressures and temperatures. Clayton: Monash University; 1998.Google Scholar
  20. 20.
    Bhattacharya S, Kabir KB, Hein K. Dimethyl ether synthesis from Victorian brown coal through gasification—current status, and research and development needs. Prog Energy Combust Sci. 2013;39(6):577–605. doi: 10.1016/j.pecs.2013.06.003.CrossRefGoogle Scholar
  21. 21.
    Liu L, Liu Q, Cao Y, Pan W-P. The isothermal studies of char-CO2 gasification using the high-pressure thermo-gravimetric method. J Therm Anal Calorim. 2015;120(3):1877–82. doi: 10.1007/s10973-015-4476-5.CrossRefGoogle Scholar
  22. 22.
    Standards Australia. Coal and coke—sampling, part 3: lower rank coal—sampling procedures (AS 4264.3-1996). Sydney: Standards Australia; 1996.Google Scholar
  23. 23.
    Yang RT, Das SK, Tsai BMC. Coal demineralization using sodium hydroxide and acid solutions. Fuel. 1985;64(6):735–42. doi: 10.1016/0016-2361(85)90002-X.CrossRefGoogle Scholar
  24. 24.
    Augustine RL. Heterogeneous catalysis for the synthetic chemist. New York: Marcel Dekker; 1996.Google Scholar
  25. 25.
    Standards Australia. Methods for the analysis and testing of low rank coal and its char (AS 2437.4-2002). Sydney: Standards Australia; 2002.Google Scholar
  26. 26.
    Standards Australia. Coal and coke—analysis and testing—higher rank coal ash and coke ash—major and minor elements—borate fusion/flame atomic absorption spectrometric method (AS 1038.14.1-2003). Sydney: Standards Australia; 2003.Google Scholar
  27. 27.
    Wen CY, Dutta S. Solid–gas reactions in coal conversion processes. Coal processing technology, vol. 4. New York: AIChE; 1978. p. 40–51.Google Scholar
  28. 28.
    Kwon T-W, Kim SD, Fung DPC. Reaction kinetics of char—CO2 gasification. Fuel. 1988;67(4):530–5.CrossRefGoogle Scholar
  29. 29.
    Lu GQ, Do DD. Comparison of structural models for high-ash char gasification. Carbon. 1994;32(2):247–63. doi: 10.1016/0008-6223(94)90188-0.CrossRefGoogle Scholar
  30. 30.
    Xiong C. Use of simplified chemical kinetics in simulation of combustion and explosions. Ann Arbor: The University of Utah; 2007.Google Scholar
  31. 31.
    Irfan MF, Usman MR, Kusakabe K. Coal gasification in CO2 atmosphere and its kinetics since 1948: a brief review. Energy. 2011;36(1):12–40. doi: 10.1016/ Scholar
  32. 32.
    Molina A, Mondragón F. Reactivity of coal gasification with steam and CO2. Fuel. 1998;77(15):1831–9. doi: 10.1016/S0016-2361(98)00123-9.CrossRefGoogle Scholar
  33. 33.
    Szekely J, Evans JW. A structural model for gas–solid reactions with a moving boundary. Chem Eng Sci. 1970;25(6):1091–107. doi: 10.1016/0009-2509(70)85053-9.CrossRefGoogle Scholar
  34. 34.
    Fermoso J, Arias B, Pevida C, Plaza MG, Rubiera F, Pis JJ. Kinetic models comparison for steam gasification of different nature fuel chars. J Therm Anal Calorim. 2008;91(3):779–86. doi: 10.1007/s10973-007-8623-5.CrossRefGoogle Scholar
  35. 35.
    Bhatia SK, Perlmutter DD. A random pore model for fluid-solid reactions: I. Isothermal, kinetic control. AIChE J. 1980;26(3):379–86. doi: 10.1002/aic.690260308.CrossRefGoogle Scholar
  36. 36.
    Gadsby J, Long FJ, Sleightholm P, Sykes KW. The mechanism of the carbon dioxide-carbon reaction. Proc R Soc A. 1034;1948(193):357–76.Google Scholar
  37. 37.
    Reif AE. The mechanism of the carbon dioxide-carbon reaction. J Phys Chem. 1952;56(6):785–8. doi: 10.1021/j150498a033.CrossRefGoogle Scholar
  38. 38.
    Nishiyama Y. Catalytic gasification of coals—features and possibilities. Fuel Process Technol. 1991;29(1–2):31–42. doi: 10.1016/0378-3820(91)90015-5.CrossRefGoogle Scholar
  39. 39.
    Li C-Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal. Fuel. 2007;86(12–13):1664–83. doi: 10.1016/j.fuel.2007.01.008.CrossRefGoogle Scholar
  40. 40.
    Ji Hayashi, Takahashi H, Iwatsuki M, Essaki K, Tsutsumi A, Chiba T. Rapid conversion of tar and char from pyrolysis of a brown coal by reactions with steam in a drop-tube reactor. Fuel. 2000;79(3–4):439–47. doi: 10.1016/S0016-2361(99)00179-9.Google Scholar
  41. 41.
    Ohtsuka Y, Asami K. Steam gasification of coals with calcium hydroxide. Energ Fuels. 1995;9(6):1038–42. doi: 10.1021/ef00054a016.CrossRefGoogle Scholar
  42. 42.
    Laue W, Thiemann M, Scheibler E, Wiegand KW. Nitrates and nitrites. Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley; 2002. p. 149–76.Google Scholar
  43. 43.
    McKee DW. Catalytic effects of alkaline earth carbonates in the carbon-carbon dioxide reaction. Fuel. 1980;59(5):308–14. doi: 10.1016/0016-2361(80)90215-X.CrossRefGoogle Scholar
  44. 44.
    Walker PL Jr, Shelef M, Anderson RA. Catalysis of carbon gasification. In: Walker Jr PL, editor. Chemistry and physics of Carbon, vol. 4. New York: Marcel Dekker; 1968. p. 287–383.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Kazi Bayzid Kabir
    • 1
    • 4
  • Arash Tahmasebi
    • 2
  • Sankar Bhattacharya
    • 1
  • Jianglong Yu
    • 2
    • 3
  1. 1.Department of Chemical EngineeringMonash UniversityClaytonAustralia
  2. 2.School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshanChina
  3. 3.Clean Coal Research, School of EngineeringUniversity of NewcastleCallaghanAustralia
  4. 4.Department of Chemical EngineeringBUETDhakaBangladesh

Personalised recommendations