Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 2, pp 1715–1726 | Cite as

Thermal stability and degradation of binuclear hexaaqua-bis(ethylenediamine)-(μ 2-pyromellitato)dinickel(II) tetrahydrate

  • Jelena D. Zdravković
  • Dejan Poleti
  • Jelena Rogan
  • Nebojša N. Begović
  • Vladimir A. Blagojević
  • Milica M. Vasić
  • Dragica M. Minić


Thermal degradation of ternary transition metal complex containing tetraanion of pyromellitic acid, pyr, and ethylenediamine, en, [Ni2(en)2(H2O)6(pyr)]·4H2O, 1, was investigated under non-isothermal conditions. The mechanism of thermal degradation, which occurs in three steps, was clarified by TG/DSC measurements in conjunction with FT-IR spectroscopy and XRPD analysis. The complexity of all degradation steps has been revealed using isoconversional methods. Dehydration comprises the loss of ten water molecules in a relatively narrow temperature interval, resulting in a very complicated reaction mechanism. In addition, density functional theory calculations have been applied for better understanding of dehydration. The second degradation step, related to loss of en, was separated into two single-step processes with Fraser–Suzuki function. The obtained individual steps were described by Johnson–Mehl–Avrami A2 model and Šesták–Berggren model, respectively. Validation of the proposed kinetic triplets for individual steps was performed using master plot and Pérez-Maqueda criteria. The third degradation step is related to the fragmentation of pyr ion most likely followed with the release of a number of gaseous products.


Thermal degradation kinetics Nickel(II) Ternary transition metal complex Deconvolution Mechanism 



Support for this work by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grants No. III45007, 175020) is gratefully acknowledged.

Supplementary material

10973_2015_5007_MOESM1_ESM.doc (4.2 mb)
Supplementary material 1 (DOC 4320 kb)


  1. 1.
    Mojumdar SC, Martiska L, Valigura D, Melnik M. A study on synthesis and thermal, spectral and biological properties of carboxylato-Mg(II) and carboxylato-Cu(II) complexes with bioactive ligands. J Therm Anal Cal. 2005;81:243–8.CrossRefGoogle Scholar
  2. 2.
    Verma RK, Verma L, Bhushan A, Verma BP. Thermal decomposition of complexes of cadmium(II) and mercury(II) with triphenylphosphanes. J Therm Anal Cal. 2007;90:725–30.CrossRefGoogle Scholar
  3. 3.
    Bocarsly JR, Barton JK. Protein surface recognition and covalent binding by chromium nitrilotriacetate complexes: elucidation using NMR and CD spectroscopies. Inorg Chem. 1992;31:2827–34.CrossRefGoogle Scholar
  4. 4.
    Farver O, Pecht I. Structure reactivity studies of blue copper proteins. Affinity labeling of electron transfer proteins by transition metal coordination. Coord Chem Rev. 1989;94:17–45.CrossRefGoogle Scholar
  5. 5.
    Crowe J, Döbeli H, Gentz R, Hochuli E, Stuber D, Henco K. 6xHis-Ni-NTA chromatography as a superior technique in recombinant protein expression/purification. Methods Mol Biol. 1994;31:371–8.Google Scholar
  6. 6.
    Nieba L, Nieba-Axmann SE, Persson A, Hamalainen M, Edebratt F, Hansson A, Lidholm J, Magnusson K, Karlsson AF, Pluckthun A. BIACORE analysis of histidine-tagged proteins using a chelating NTA sensor chip. Anal Biochem. 1997;252:217–28.CrossRefGoogle Scholar
  7. 7.
    Maloney KM, Shnek DR, Sasaki DY, Arnold FH. Fluorescence signaling of ligand binding and assembly in metal-chelating lipid membranes. Chem Biol. 1996;3:185–92.CrossRefGoogle Scholar
  8. 8.
    Sigel H. Discriminating and stability increasing properties of the imidazole moiety in mixed-ligand complexes. Inorg Chem. 1980;19:1411–3.CrossRefGoogle Scholar
  9. 9.
    Ma BQ, Zhang DS, Gao S, Jin TZ, Yan CH. From cubane to supercubane: the design, synthesis and structure of a three-dimensional open framework based on a Ln4O4 cluster. Angew Chem Int Ed. 2000;39:3644–6.CrossRefGoogle Scholar
  10. 10.
    Moulton B, Zaworotko M. From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem Rev. 2001;101:1629–58.CrossRefGoogle Scholar
  11. 11.
    Luo YH, Sun BW. Pharmaceutical co-crystals of pyrazinecarboxamide (PZA) with various carboxylic acids: crystallography, hirshfeld surfaces and dissolution study. Cryst Growth Des. 2013;13:2098–106.CrossRefGoogle Scholar
  12. 12.
    Lin X, Telepeni I, Blake AJ, Dailly A, Brown CM, Simmons JM, Zoppi M, Walker GS, Thomas KM, Mays TJ, Hubberstey P, Champness NR, Schroeder M. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization and exposed metal sites. J Am Chem Soc. 2009;131:2159–71.CrossRefGoogle Scholar
  13. 13.
    Wang XS, Ma S, Rauch K, Simmons JM, Yuan D, Wang X, Yildirim T, Cole WC, López JJ, Meijere AD, Zhou HC. Metal–organic frameworks based on double-bond-coupled di-isophthalate linkers with high hydrogen and methane uptakes. Chem Mater. 2008;20:3145–52.CrossRefGoogle Scholar
  14. 14.
    Wu S, Ma L, Long LS, Zheng LS, Lin W. Three-dimensional metal–organic frameworks based on functionalized tetracarboxylate linkers. Inorg Chem. 2009;48:2436–42.CrossRefGoogle Scholar
  15. 15.
    Poleti D, Karanović Lj. Structure of hexaaquacobalt(II) catena-Tetraaqua-µ-[1,2,4,5-benzenetetracarboxylato(4-)]-cobaltate(II) 7.36-hydrate. Acta Crystallogr C. 1989;45:1716–8.CrossRefGoogle Scholar
  16. 16.
    Karanović Lj, Poleti D, Bogdanović GA, Spasojević-de Biré A. Disodium hexaaquacobalt(II) bis[dihydrogen 1,2,4,5-benzenetetracarboxylate(2–)] tetrahydrate. Acta Crystallogr C. 1999;55:911–3.CrossRefGoogle Scholar
  17. 17.
    Poleti D, Karanović Lj. 1,3-propanediammonium [µ-1,2,4,5-benzenetetracarboxylato(4-)]copper(II) dihydrate with a microporous structure. J Serb Chem Soc. 2005;70:1441–51.CrossRefGoogle Scholar
  18. 18.
    Rogan J, Poleti D, Karanović Lj. Synthesis, structure and thermal properties of two new inorganic-organic framework compounds: hexaaqua(µ2-1,2,4,5 benzenetetracarboxylato)bis(N,N′-1,10-phenathroline)dicobalt(II) dihydrate and hexaaqua(µ2-1,2,4,5-benzenetetracarboxylato)bis(N,N′-2,2′-dipyridylamine)dinickel(II) tetrahydrate. Z Anorg Allg Chem. 2006;632:133–9.CrossRefGoogle Scholar
  19. 19.
    Poleti D, Prelesnik B, Herak R, Stojaković Đ. Structure of binuclear hexaaqua-µ 2-[1,2,4,5-benzenetetracarboxylato(4-)]-bis(ethylenediamine)-dinickel(II) tetrahydrate. Acta Crystallogr C. 1988;44:242–5.CrossRefGoogle Scholar
  20. 20.
    Stephenson MD, Hardie MJ. Extended structures of transition metal complexes of 6,7-dicyanodipyridoquinoxaline: π-stacking, weak hydrogen bonding, and CN···π interactions. Cryst Growth Des. 2006;6:423–32.CrossRefGoogle Scholar
  21. 21.
    Wang P, Moorefield CN, Panzer M, Newkome GR. Helical and polymeric nanostructures assembled from benzene tri- and tetracarboxylic acids associated with terpyridine copper(II) complexes. Chem Commun. 2005;4:465–7.CrossRefGoogle Scholar
  22. 22.
    Zhang LJ, Xu JQ, Shi Z, Zhao XL, Wang TG. Hydrothermal synthesis, structures and properties of coordination polymers based on μ4-bridging benzene-1,2,4,5-tetracarboxylate: [Co(Him)24-bta)1/2]n and {[Cu(phen)(μ4-bta)1/2]·H2O}n (bta = benzene-1,2,4,5-tetracarboxylate, Him = imidazole, phen = 1,10-phenanthroline). J Solid State Chem. 2003;173:32–9.CrossRefGoogle Scholar
  23. 23.
    Fabelo O, Pasán J, Lloret F, Julve M, Ruiz-Pérez C. 1,2,4,5-benzenetetracarboxylate- and 2,2′-bipyrimidine-containing cobalt(II) coordination polymers: preparation, crystal structure, and magnetic properties. Inorg Chem. 2008;47:3568–76.CrossRefGoogle Scholar
  24. 24.
    Zhao S, Zhu X, Wang J, Yang Z, Li BL, Wu B. Two unusual 3D and 2D zinc coordination polymers containing 2D or 1D [Zn2(btec)]n based on flexible bis(triazole) and rigid benzenetetracarboxylate co-ligands. Inorg Chem Commun. 2012;26:37–41.CrossRefGoogle Scholar
  25. 25.
    Massoud SS, Mautner FA, Louka FR, Demeshko S, Dechert S, Meyer F. Diverse coordination of polynuclear copper(II) complexes constructed from benzenetetracarboxylates. Inorg Chim Acta. 2011;370:435–43.CrossRefGoogle Scholar
  26. 26.
    Šumar-Ristović MT, Minić DM, Poleti D, Miodragović Z, Miodragović Đ, Anđelković KK. Thermal stability and degradation of Co(II), Cd(II) and Zn(II) complexes with N-benzyloxycarbonylglycinato ligand. J Therm Anal Calorim. 2010;102:83–90.CrossRefGoogle Scholar
  27. 27.
    Šumar-Ristović MT, Anđelković KK, Minić DM, Poleti D. Thermal degradation of coordination polymer [Cd(N-Boc-gly)2(H2O)2]n. Thermochim Acta. 2011;525:25–30.CrossRefGoogle Scholar
  28. 28.
    Minić DM, Šumar-Ristović MT, Miodragović ĐU, Anđelković KK, Poleti D. Kinetics and mechanism of degradation of Co(II) complex with N-benzyloxycarbonylglycinato ligand. J Therm Anal Calorim. 2012;107:1167–76.CrossRefGoogle Scholar
  29. 29.
    Zdravković J, Poleti D, Rogan J, Minić DM. Bis(2,2′-bipyridine)-bis(μ 3-phthalato)-dicopper(II) tetrahydrate as molecular sieve with zero-dimensional structure. Polyhedron. 2014;80:256–64.CrossRefGoogle Scholar
  30. 30.
    Muraleedharan K, Kripa S. Thermal dehydration kinetics of potassium bis(oxalato)cuprate(II) dihydrate. J Anal Appl Pyrolysis. 2014;107:298–305.CrossRefGoogle Scholar
  31. 31.
    Vecchioa S, Materazzi S, Wo LW, De Angelis Curtis S. Thermoanalytical study of imidazole-substituted coordination compounds: Cu(II)- and Zn(II)-complexes of bis(1-methylimidazol-2-yl)ketone. Thermochim Acta. 2013;568:31–7.CrossRefGoogle Scholar
  32. 32.
    Jun L, Feng-Xing Z, Yan-Wei R, Yong-Qian H, Ye-Fei N. Thermal kinetic TG-analysis of metal oxalate complexes. Thermochim Acta. 2003;406:77–87.CrossRefGoogle Scholar
  33. 33.
    Padhi SK. Solid-state kinetics of thermal release of pyridine and morphological study of [Ni(ampy)2(NO3)2]; ampy = 2-picolylamine. Thermochim Acta. 2006;448:1–6.CrossRefGoogle Scholar
  34. 34.
    Perejón A, Sanchez-Jimenez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115:1780–91.CrossRefGoogle Scholar
  35. 35.
    Koga N, Goshi Y, Yamada S, Pérez-Maqueda LA. Kinetic approach to partially overlapped thermal decomposition processes. Co-precipitated zinc carbonates. J Therm Anal Calorim. 2013;111:1463–74.CrossRefGoogle Scholar
  36. 36.
    Findoráková L, Svoboda R. Kinetic analysis of the thermal decomposition of Zn(II) 2-chlorobenzoate complex with caffeine. Thermochim Acta. 2012;543:113–7.CrossRefGoogle Scholar
  37. 37.
    Šumar-Ristović M, Minić DM, Blagojević V, Anđelković K. Kinetics of multi-step processes of thermal degradation of Co(II) complex with N-benzyloxycarbonylglycinato ligand. Deconvolution of DTG Curves. Sci Sinter. 2014;46:37–53.CrossRefGoogle Scholar
  38. 38.
    Begović NN, Blagojević VA, Ostojić SB, Radulović AM, Poleti D, Minić DM. Step-wise thermal degradation of [Ni2(en)2(H2O)6(pyr)]·4H2O flexible coordination polymer. Mat Chem Phys. 2015;149–150:105–12.CrossRefGoogle Scholar
  39. 39.
    Begović NN, Stojanović NN, Ostojić SB, Radulović AM, Blagojević VA, Simonović B, Minić DM. Thermally induced polymerization of binuclear [Ni2(en)2(H2O)6(pyr)]·4H2O complex. Thermochim Acta. 2015;607:82–91.CrossRefGoogle Scholar
  40. 40.
    Vyazovkin S. Computational aspects of kinetic analysis: Part C. The ICTAC Kinetics Project—the light at the end of the tunnel? Thermochim Acta. 2000;355:155–63.CrossRefGoogle Scholar
  41. 41.
    Frisch MJ, Trucks GW, Pople JA. Gaussian 09, revision B.2. Pittsburgh: Gaussian, Inc; 2009.Google Scholar
  42. 42.
    Neese F. The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci. 2012;2:73–8.CrossRefGoogle Scholar
  43. 43.
    Sinnecker S, Rajendran A, Klamt A, Diedenhofen M, Neese F. Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (Direct COSMO-RS). J Phys Chem A. 2006;110:2235–45.CrossRefGoogle Scholar
  44. 44.
    Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38:3098.CrossRefGoogle Scholar
  45. 45.
    Lee C, Yang W, Parr RG. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785.CrossRefGoogle Scholar
  46. 46.
    Perdew JP. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B. 1986;33:8822.CrossRefGoogle Scholar
  47. 47.
    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.CrossRefGoogle Scholar
  48. 48.
    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;1997(78):1396.Google Scholar
  49. 49.
    Zelenák V, Vargová Z, Györyová K, Veerníková E, Balek V. Copper(II) acetates with aliphatic/heterocyclic amines coupled TG-DTA-EGA study, IR characterization and structure correlation. J Therm Anal Calorim. 2005;82:747–54.CrossRefGoogle Scholar
  50. 50.
    Mohamed MA, Halaway SA, Ebrahim MM. Non-isothermal decomposition of nickel acetate tetrahydrate. J Anal Appl Pyrolysis. 1993;27:109–18.CrossRefGoogle Scholar
  51. 51.
    Luehrs DC, Cornilsen BC, Glover CB, Neils TL. Infrared and raman spectra of metal 1,2,4,5-benzentetracarboxylates: evidence for very short, strong hydrogen bonds. Inorg Chim Acta. 1988;145:81–4.CrossRefGoogle Scholar
  52. 52.
    Diniz R, De Abreu HA, De Almeida WB, Fernandes NG, Sansiviero MTC. Vibrational spectra of Na, K, Mn2+, Ni2+ and Zn2+ salts of 1,2,4,5-benzentetracarboxylic (pyromellitic) acid—a short hydrogen bond evidence. Spectrochim Acta Part A. 2005;61:1747–57.CrossRefGoogle Scholar
  53. 53.
    Socrates G. Infrared and Raman characteristic group frequencies: tables and charts. 3rd ed. New York: Wiley; 2001. p. 64.Google Scholar
  54. 54.
    Deacon GB, Phillips RJ. Relationships between the carbon–oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.CrossRefGoogle Scholar
  55. 55.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  56. 56.
    Ozawa TJ. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2:301–24.CrossRefGoogle Scholar
  57. 57.
    Rogan J, Poleti D. Thermal behaviour of mixed ligand Co(II), Ni(II) and Cu(II) complexes containing terephthalate ligands. Thermochim Acta. 2004;413:227–34.CrossRefGoogle Scholar
  58. 58.
    Ribeiro da Silva MAV, Ferrão MLCCH. Energetics of metal-oxygen bonds in metal complexes of β-diketones. Pure Appl Chem. 1988;60:1225–34.Google Scholar
  59. 59.
    Abd-Alla EM, Abdel-Hamid MI. Kinetics and mechanism of the non-isothermal decomposition: some Ni(II)-carboxylate-imidazole ternary complexes. J Therm Anal Calorim. 2000;62:769–80.CrossRefGoogle Scholar
  60. 60.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  61. 61.
    Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.CrossRefGoogle Scholar
  62. 62.
    Akahira T, Sunose T. Trans joint convention of four electrical institutes paper No. 246. Res Rep Chiba Inst Technol Sci Technol. 1971;16:22–31.Google Scholar
  63. 63.
    Ortega A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474:81–6.CrossRefGoogle Scholar
  64. 64.
    Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1988;17:407–33.CrossRefGoogle Scholar
  65. 65.
    Vyazovkin SV, Lesnikovich AI. An approach to the solution of the inverse kinetic problem in the case of complex processes. Part 1. Methods employing a series of thermoanalytical curves. Thermochim Acta. 1990;165:273–80.CrossRefGoogle Scholar
  66. 66.
    Vyazovkin SV. An approach to the solution of the inverse kinetic problem in the case of complex processes. Part 4. Chemical reactions complicated by diffusion. Thermochim Acta. 1993;223:201–6.CrossRefGoogle Scholar
  67. 67.
    Màlek J, Mitsuhashi T, Criado JM. Kinetic analysis of solid-state processes. J Mater Res. 2001;16:1862–71.CrossRefGoogle Scholar
  68. 68.
    Montserrat S, Màlek J, Colomer P. Thermal degradation kinetics of epoxy–anhydride resins: I. Influence of a silica filler. Thermochim Acta. 1998;313:83–95.CrossRefGoogle Scholar
  69. 69.
    Màlek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.CrossRefGoogle Scholar
  70. 70.
    Màlek J. A computer program for kinetic analysis of non-isothermal thermoanalytical data. Thermochim Acta. 1989;138:337–46.CrossRefGoogle Scholar
  71. 71.
    Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.CrossRefGoogle Scholar
  72. 72.
    Burnham AK. Application of the Šesták–Berggren equation to organic and inorganic materials of practical interest. J Therm Anal Calorim. 2000;60:895–908.CrossRefGoogle Scholar
  73. 73.
    Málek J, Criado JM. Is the Šesták–Berggren equation a general expression of kinetic models? Thermochim Acta. 1991;175:305–9.CrossRefGoogle Scholar
  74. 74.
    Šimon P. Fourty years of the Šesták–Berggren equation. Thermochim Acta. 2011;520:156–7.CrossRefGoogle Scholar
  75. 75.
    Gotor F, Criado MJ, Màlek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.CrossRefGoogle Scholar
  76. 76.
    Pérez-Maqueda AL, Criado MJ, Gotor JF, Màlek J. Advantages of combined kinetic analysis of experimental data obtained under any heating profile. J Phys Chem A. 2002;106:2862–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Jelena D. Zdravković
    • 1
  • Dejan Poleti
    • 2
  • Jelena Rogan
    • 2
  • Nebojša N. Begović
    • 3
  • Vladimir A. Blagojević
    • 4
  • Milica M. Vasić
    • 5
  • Dragica M. Minić
    • 6
  1. 1.Faculty of Technology and Metallurgy, Innovation CentreUniversity of BelgradeBelgradeSerbia
  2. 2.Department of General and Inorganic Chemistry, Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  3. 3.Institute of General and Physical ChemistryBelgradeSerbia
  4. 4.Institute of Technical Sciences SASABelgradeSerbia
  5. 5.Faculty of Physical ChemistryUniversity of BelgradeBelgradeSerbia
  6. 6.Department of Biochemical SciencesState University of Novi PazarNovi PazarSerbia

Personalised recommendations