Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 3, pp 1787–1794 | Cite as

Effect of organic functional groups on the phase transition of organic liquids in silica mesopores

  • Takashi TakeiEmail author
  • Mayaka Nakada
  • Norinobu Yoshikawa
  • Yoshihisa Hiroe
  • Hirohisa Yoshida


The phase transition behaviors of organic liquids condensed in the silica mesopores which modified with organic functional groups have been investigated. Three organic liquids, n-hexane, 1-hexanol and acetonitrile, were employed. The melting points of the organic liquids in the pores with and without the organic functional groups decreased with decreasing the pore size. The effect of the organic functional groups on the change in the physical properties of the organic condensed liquids in the pores was estimated from a depression of the melting point. The phase transition behaviors of the organic liquids in the pores closely related to the interaction between the organic molecules and the pore surfaces.


Silica Mesopore Phase transition Surface modification 


  1. 1.
    Rouquerol F, Rouquerol J, Sing K. Adsorption by powders and porous solids: principles, methodology and applications. London: Academic Press; 1999. pp. 191–217.Google Scholar
  2. 2.
    Brun M, Lallemand A, Quinson JF, Eyraud C. A new method for the simultaneous determination of the size and the shape of pores: the thermoporometry. Thermochim Acta. 1977;21:59–88.CrossRefGoogle Scholar
  3. 3.
    Ishikiriyama K, Todoki M. Pore size distribution measurements of silica gels by means of differential scanning calorimetry. II. Thermoporometry. J Colloid Interface Sci. 1995;171:103–11.CrossRefGoogle Scholar
  4. 4.
    Riikonen J, Salonen J, Lehto V-P. Utilising thermoporometry to obtain new insights into nanostructured materials. Review part 1. J Therm Anal Calorim. 2011;105:811–21.CrossRefGoogle Scholar
  5. 5.
    Riikonen J, Salonen J, Lehto V-P. Utilising thermoporometry to obtain new insights into nanostructured materials. Review part 2. J Therm Anal Calorim. 2011;105:823–30.CrossRefGoogle Scholar
  6. 6.
    Zeman L, Tkacik G, Parlouer P. Characterization of porous sublayers in UF membranes by thermoporometry. J Membrane Sci. 1987;32:329–37.CrossRefGoogle Scholar
  7. 7.
    Quinson JF, Mameri N, Guihard L, Bariou B. The study of the swelling of an ultrafiltration membrane under the influence of solvents by the thermoporometry and measurement of permeability. J Membrane Sci. 1991;58:191–200.CrossRefGoogle Scholar
  8. 8.
    Beurroies I, Denoyel R, Llewllyn P, Rouquerol J. A comparison between melting-solidification and capillary condensation hysteresis in mesoporous materials: application to the interpretation of thermoporometry data. Thermochim Acta. 2004;421:11–8.CrossRefGoogle Scholar
  9. 9.
    Endo A, Yamamoto T, Inagaki Y, Iwakabe K, Ohmori T. Characterization of nonfreezable pore water in mesoporous silica by thermoporometry. J Phys Chem C. 2008;112:9034–9.CrossRefGoogle Scholar
  10. 10.
    Cides da Silva LC, Araújo GLB, Segismundo NR, Moscardini EF, Mercuri LP, Cosentino IC, Fantini MC, Matos JR. DSC estimation of structural and textural parameters of SBA-15 silica using water probe. J Therm Anal Calorim. 2009;97:701–4.CrossRefGoogle Scholar
  11. 11.
    Bahloul N, Baba M, Nedelec J-M. Universal behavior of liner alkanes in a confined medium: toward a calibrationless use of thermoporometry. J Phys Chem B. 2005;109:16227–9.CrossRefGoogle Scholar
  12. 12.
    Illeková E, Krištiak J, Macová E, Maťko I, Šauša O. Rearrangement of hexadecane molecules confined in the nanopores of a controlled pore glass using positron annihilation and differential scanning calorimetry. J Therm Anal Calorim. 2013;113:1187–96.CrossRefGoogle Scholar
  13. 13.
    Landry MR. Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim Acta. 2005;433:27–50.CrossRefGoogle Scholar
  14. 14.
    Nedelec J-M, Grolier J-E, Baba M. Thermoporosimetry: a powerful tool to study the cross-linking in gels networks. J Sol Gel Sci Technol. 2006;40:191–200.CrossRefGoogle Scholar
  15. 15.
    Wulff M. Pore size determination by thermoporometry using acetonitrile. Thermochim Acta. 2004;419:291–4.CrossRefGoogle Scholar
  16. 16.
    Kittaka S, Kuranishi M, Ishimaru S, Umahara O. Low temperature properties of acetonitrile confined in MCM-41. J Phys Chem B. 2005;109:23162–9.CrossRefGoogle Scholar
  17. 17.
    Takei T, Onoda Y, Fuji M, Watanabe T, Chikazawa M. Anomalous phase transition behavior of carbon tetrachloride in silica pores. Thermochim Acta. 2000;352–353:199–204.CrossRefGoogle Scholar
  18. 18.
    Meziane A, Grolier J-PE, Baba M, Nedelec J-M. Crystallization of carbon tetrachloride in confined geometries. Faraday Discuss. 2007;136:383–94.CrossRefGoogle Scholar
  19. 19.
    Husár B, Commereuc S, Lukáč I, Chmela S, Nedelec J-M, Baba M. Carbon tetrachloride as a thermoporometry liquid probe to study the cross-linking of stylene copolymer networks. J Phys Chem B. 2006;110:5315–20.CrossRefGoogle Scholar
  20. 20.
    Levitz P, Ehret G, Shinha SK, Drake JM. Porous vycor glass: the microstructures as probed by electron microscopy, direct energy transfer, small-angle scattering, and molecular adsorption. J Chem Phys. 1991;95:6151–61.CrossRefGoogle Scholar
  21. 21.
    Iler RK. The chemistry of silica. New York: Wiley; 1979. pp. 479–488.Google Scholar
  22. 22.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992;114:10834–43.CrossRefGoogle Scholar
  23. 23.
    Grulke EA. Solubility parameter values. In: Brandrup J, Immergut EH, Grulke EA, editors. Polymer handbook. Hoboken: Wiley; 1999. p. 675–714.Google Scholar
  24. 24.
    Barrow MJ. α-Acetnitrile at 215 K. Acta Cryst. 1981;B37:2239–42.CrossRefGoogle Scholar
  25. 25.
    Antson OK, Tilli KJ, Andersen NH. Neutron powder diffraction study of deuterated β-acetonitrile. Acta Cryst. 1987;B43:296–301.CrossRefGoogle Scholar
  26. 26.
    Takei T, Konishi T, Fuji M, Watanabe T, Chikazawa M. Phase transition of capillary condensed liquids in porous silica: effect of surface hydroxyl groups. Thermochim Acta. 1995;267:159–67.CrossRefGoogle Scholar
  27. 27.
    Takei T, Yamazaki A, Watanabe T, Chikazawa M. Water adsorption properties on porous silica glass surface modified by trimethylsilyl groups. J Colloid Interface Sci. 1997;188:409–14.CrossRefGoogle Scholar
  28. 28.
    Tsutsumi K, Takahashi H. Studies of surface modification of solids. Colloid Polym Sci. 1985;263:506–11.CrossRefGoogle Scholar
  29. 29.
    Fuji M, Ueno S, Takei T, Watanabe T, Chikazawa M. Surface structural analysis of fine silica powder modified with butyl alcohol. Colloid Polym Sci. 2000;278:30–6.CrossRefGoogle Scholar
  30. 30.
    Haukka S, Root A. The reaction of hexamethyldisilazane and subsequent oxidation of trimethylsilyl groups on silica studied by solid-state NMR and FTIR. J Phys Chem. 1994;98:1695–703.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Takashi Takei
    • 1
    Email author
  • Mayaka Nakada
    • 1
  • Norinobu Yoshikawa
    • 2
  • Yoshihisa Hiroe
    • 2
  • Hirohisa Yoshida
    • 1
  1. 1.Department of Applied Chemistry, Graduate School of Urban Environmental SciencesTokyo Metropolitan UniversityHachiojiJapan
  2. 2.Shiseido Research CenterYokohamaJapan

Personalised recommendations