Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 1, pp 745–756 | Cite as

Reduction kinetics analysis of sol–gel-derived CuO/CuAl2O4 oxygen carrier for chemical looping with oxygen uncoupling

  • Lei Guo
  • Haibo Zhao
  • Kun Wang
  • Daofeng Mei
  • Zhaojun Ma
  • Chuguang Zheng
Article

Abstract

Chemical looping with oxygen uncoupling (CLOU) is a promising technology due to its potential to reduce energy efficiency penalty and cost associated with CO2 capture. In this work, a CuO/CuAl2O4 oxygen carrier (OC) prepared by sol–gel was investigated in its oxygen release kinetics (4CuO → 2Cu2O + O2). Based on several well-organized temperature-programmed reduction experiments which were conducted in a thermogravimetric analyzer, the activation energy E (343.7 kJ mol−1) and pre-exponential factor A (3.78 × 1012 s−1) were determined and the Avrami–Erofeev random nucleation and subsequence growth model fitted well with the reduction experimental data. The enhancement of OC reduction rate in real fluidized bed CLOU reactor using different types of solid fuels (petroleum coke, anthracite, bituminous, and lignite) was identified in terms of the chemical kinetics and thermodynamics for the first time. It was found that the CuO reduction rate is more sensitive to the local temperature change than the oxygen concentration driving force. The results could contribute to the design, operation, and performance prediction of real CLOU reactors.

Keywords

Reduction kinetics Solid fuels CLOU Oxygen concentration driving force Kinetics barrier 

Notes

Acknowledgements

This research was funded by “National Natural Science Foundation of China (51390494) and 51561125001.” Meanwhile, the staffs from the Analytical and Testing Center and Huazhong University of Science and Technology are also appreciated for the related experimental analysis.

References

  1. 1.
    Adánez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF. Progress in chemical-looping combustion and reforming technologies. Prog Energy Combust. 2012;38(2):215–82.CrossRefGoogle Scholar
  2. 2.
    Mattisson T. Materials for chemical-looping with oxygen uncoupling. ISRN Chem Eng. 2013;. doi: 10.1155/2013/526375.Google Scholar
  3. 3.
    Leion H, Mattisson T, Lyngfelt A. Chemical looping combustion of solid fuels in a laboratory fluidized-bed reactor. Oil Gas Sci Technol. 2011;66(2):201–8. doi: 10.2516/Ogst/2010026.CrossRefGoogle Scholar
  4. 4.
    Mattisson T, Lyngfelt A, Leion H. Chemical-looping with oxygen uncoupling for combustion of solid fuels. Int J Greenh Gas Control. 2009;3(1):11–9.CrossRefGoogle Scholar
  5. 5.
    Mattisson T, Leion H, Lyngfelt A. Chemical-looping with oxygen uncoupling using CuO/ZrO2 with petroleum coke. Fuel. 2009;88(4):683–90. doi: 10.1016/j.fuel.2008.09.016.CrossRefGoogle Scholar
  6. 6.
    Abad A, Adánez-Rubio I, Gayan P, Garcia-Labiano F, de Diego LF, Adánez J. Demonstration of chemical-looping with oxygen uncoupling (CLOU) process in a 1.5 kW(th) continuously operating unit using a Cu-based oxygen-carrier. Int J Greenh Gas Control. 2012;6:189–200. doi: 10.1016/j.ijggc.2011.10.016.CrossRefGoogle Scholar
  7. 7.
    Adánez-Rubio I, Abad A, Gayan P, de Diego LF, Garcia-Labiano F, Adánez J. Performance of CLOU process in the combustion of different types of coal with CO2 capture. Int J Greenh Gas Control. 2013;12:430–40.CrossRefGoogle Scholar
  8. 8.
    Imtiaz Q, Hosseini D, Müller CR. Review of oxygen carriers for chemical looping with oxygen uncoupling (CLOU): thermodynamics, material development, and synthesis. Energy Technol. 2013;1(11):633–47.CrossRefGoogle Scholar
  9. 9.
    Rydén M, Leion H, Mattisson T, Lyngfelt A. Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling. Appl Energy. 2014;113:1924–32.CrossRefGoogle Scholar
  10. 10.
    Adánez-Rubio I, Arjmand M, Leion H, Gayan P, Abad A, Mattisson T, et al. Investigation of combined supports for Cu-based oxygen carriers for chemical-looping with oxygen uncoupling (CLOU). Energy Fuels. 2013;27(7):3918–27. doi: 10.1021/ef401161s.CrossRefGoogle Scholar
  11. 11.
    Zhao H-Y, Cao Y, Orndorff W, Pan W-P. Study on modification of Cu-based oxygen carrier for chemical looping combustion. J Therm Anal Calorim. 2013;113(3):1123–8.CrossRefGoogle Scholar
  12. 12.
    Cui Y, Cao Y, Pan W-P. Preparation of copper-based oxygen carrier supported by titanium dioxide. J Therm Anal Calorim. 2013;114(3):1089–97. doi: 10.1007/s10973-013-3131-2.CrossRefGoogle Scholar
  13. 13.
    Mei DF, Zhao HB, Ma ZJ, Zheng CG. Using the sol–gel-derived CuO/CuAl2O4 oxygen carrier in chemical looping with oxygen uncoupling for three typical coals. Energy Fuels. 2013;27(5):2723–31. doi: 10.1021/ef3021602.CrossRefGoogle Scholar
  14. 14.
    Ksepko E, Labojko G. Effective direct chemical looping coal combustion with bi-metallic Fe–Cu oxygen carriers studied using TG-MS techniques. J Therm Anal Calorim. 2014;117(1):151–62. doi: 10.1007/s10973-014-3674-x.CrossRefGoogle Scholar
  15. 15.
    Ksepko E, Sciazko M, Babinski P. Studies on the redox reaction kinetics of Fe2O3–CuO/Al2O3 and Fe2O3/TiO2 oxygen carriers. Appl Energy. 2014;115:374–83.CrossRefGoogle Scholar
  16. 16.
    Wu X, Zhou K, Wu W, Cui X, Li Y. Magnetic properties of nanocrystalline CuFe2O4 and kinetics of thermal decomposition of precursor. J Therm Anal Calorim. 2013;111(1):9–16. doi: 10.1007/s10973-011-2104-6.CrossRefGoogle Scholar
  17. 17.
    Abad A, Garcia-Labiano F, de Diego LF, Gayan P, Adánez J. Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO + H2) for chemical-looping combustion. Energy Fuels. 2007;21(4):1843–53.CrossRefGoogle Scholar
  18. 18.
    Sahir AH, Lighty JS, Sohn HY. Kinetics of copper oxidation in the air reactor of a chemical looping combustion system using the law of additive reaction times. Ind Eng Chem Res. 2011;50(23):13330–9. doi: 10.1021/ie2015779.CrossRefGoogle Scholar
  19. 19.
    Sahir AH, Sohn HY, Leion H, Lighty JS. Rate analysis of chemical-looping with oxygen uncoupling (CLOU) for solid fuels. Energy Fuels. 2012;26(7):4395–404.CrossRefGoogle Scholar
  20. 20.
    Eyring EM, Konya G, Lighty JS, Sahir AH, Sarofim AF, Whitty K. Chemical looping with copper oxide as carrier and coal as fuel. Oil Gas Sci Technol. 2011;66(2):209–21. doi: 10.2516/Ogst/2010028.CrossRefGoogle Scholar
  21. 21.
    Song H, Shah K, Doroodchi E, Wall T, Moghtaderi B. Analysis on chemical reaction kinetics of cuo/sio2 oxygen carriers for chemical looping air separation. Energy Fuels. 2014;28(1):173–82.CrossRefGoogle Scholar
  22. 22.
    Wang K, Yu QB, Qin Q. Reduction kinetics of Cu-Based oxygen carriers for chemical looping air separation. Energy Fuels. 2013;27(9):5466–74.CrossRefGoogle Scholar
  23. 23.
    Wang K, Yu Q, Qin Q. The thermodynamic method for selecting oxygen carriers used for chemical looping air separation. J Therm Anal Calorim. 2013;112:747–53.CrossRefGoogle Scholar
  24. 24.
    Clayton CK, Whitty KJ. Measurement and modeling of decomposition kinetics for copper oxide-based chemical looping with oxygen uncoupling. Appl Energy. 2014;116:416–23.CrossRefGoogle Scholar
  25. 25.
    Adánez-Rubio I, Abad A, Gayan P, de Diego LF, Garcia-Labiano F, Adánez J. Identification of operational regions in the chemical-looping with oxygen uncoupling (CLOU) process with a Cu-based oxygen carrier. Fuel. 2012;102:634–45. doi: 10.1016/j.fuel.2012.06.063.CrossRefGoogle Scholar
  26. 26.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1):1–19.CrossRefGoogle Scholar
  27. 27.
    Starink M. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta. 1996;288(1):97–104.CrossRefGoogle Scholar
  28. 28.
    Šatava V. Mechanism and kinetics from non-isothermal TG traces. Thermochim Acta. 1971;2(5):423–8.CrossRefGoogle Scholar
  29. 29.
    Doyle C. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92.CrossRefGoogle Scholar
  30. 30.
    Brown ME, Dollimore D, Galwey AK. Reactions in the solid state. New York: Elsevier; 1980.Google Scholar
  31. 31.
    Zhang Y, Zhao H, Guo L, Zheng C. Decomposition mechanisms of Cu-based oxygen carriers for chemical looping with oxygen uncoupling based on density functional theory calculations. Combust Flame. 2015;162:1265–74.CrossRefGoogle Scholar
  32. 32.
    Arjmand M, Keller M, Leion H, Mattisson T, Lyngfelt A. Oxygen release and oxidation rates of MgAl2O4-supported CuO oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU). Energy Fuels. 2012;26(11):6528–39.Google Scholar
  33. 33.
    Kubaschewski O, Evans EL, Alcock C. Metallurgical thermochemistry. Oxford: Pergamon press; 1979.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Coal CombustionHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations