Analysis of composition and temperature dependence of some thermal transport properties in glassy Ge30−xSe70Snx alloys using transient plane source technique

  • Vandana Kumari
  • Anusaiya Kaswan
  • Dinesh Patidar
  • Kananbala Sharma
  • Narendra Sahai Saxena


Measurements of thermal transport properties such as effective thermal conductivity (λ e) and effective thermal diffusivity (k e) of Ge30−xSe70Snx (x = 8, 11, 14, 17, and 20) chalcogenide glasses have been made using transient plane source technique in temperature range from room temperature to 300 °C. Both effective thermal conductivity (λ e) and effective thermal diffusivity (k e) are almost constant in the temperature range from room temperature to 240 °C. Beyond 240 °C, both λ e and k e increase with the increase in temperature and show maxima at a particular temperature which is a characteristic temperature for a given material. For further increase in temperature, both λ e and k e decrease slowly. Addition of Sn concentration in the glass increases the value of λ e and k e over the entire range of temperature under investigation for all five samples. Here, an effort has also been made to predict the values of both λ e and k e by using empirical relationships.


Chalcogenide glasses Transient plane source technique Effective thermal conductivity Effective thermal diffusivity Empirical relation 



One of the authors (Vandana Kumari) is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi (India), for providing financial assistance in the form of research scholarship. We are also thankful to Dr. Mahesh Baboo for his help in various ways during the course of this work.


  1. 1.
    Chen H, Chen S, Wu S. Glass formation, physical properties and optical properties of Ge–Se–Sn and Ge–Sb–Se–Sn alloys. Mater Chem Phys. 2003;80:176–85.CrossRefGoogle Scholar
  2. 2.
    Gokhale AB, Abbaschian R. The Ge–Se (germanium–selenium) system. Bull Alloy Phase Diagr. 1990;11:257–63.Google Scholar
  3. 3.
    Nemec P, Frumar M. Synthesis and properties of Pr3+-doped Ge–Ga–Se glasses. J Noncryst Solid. 2002;299–302:1018–22.CrossRefGoogle Scholar
  4. 4.
    Choi YG, Kim KH, Park BJ, Heo J. 1.6 μm emission from Pr3+:  (3F3, 3F4) → 3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses. Appl Phys Lett. 2001;78:1249.CrossRefGoogle Scholar
  5. 5.
    Rowlands J, Kasap S. Amorphous semiconductors usher in digital X-ray imaging. Phys Today. 1997;50:24–30.CrossRefGoogle Scholar
  6. 6.
    Kumar S, Singh K. Simultaneous measurements of thermal conductivity and thermal diffusivity of Se90−xTe5Sn5Inx (x = 0, 3, 6, and 9) multicomponent chalcogenide glasses. J Mater Sci. 2012;47:3949–52.CrossRefGoogle Scholar
  7. 7.
    Mott NF. Conduction in non-crystalline materials: III. Localized states in a pseudogap and near extremities of conduction and valence bands. Philos Mag. 1969;19:835–52.CrossRefGoogle Scholar
  8. 8.
    Modgil V, Rangra VS. Effect of Sn addition on thermal and optical properties of Pb9Se71Ge20−xSnx (8 ≤ x ≤ 12) glass. J Mater. 2014. doi: 10.1155/2014/318262.Google Scholar
  9. 9.
    Sharma S, Kumar R, Sareen A, Sharma N. Effect of partial replacement of Se by Ge on the physical parameters of Ge–Se–Sn glass system. J Ovonic Res. 2013;9:167–74.Google Scholar
  10. 10.
    Sales BC, Chakoumakos BC, Jin R, Thompson JR, Mandrus D. Structural, magnetic, thermal, and transport properties of X8Ga16Ge30 (X = Eu, Sr, Ba) single crystals. Phys Rev B. 2001;63:245113-1–7.CrossRefGoogle Scholar
  11. 11.
    Dong J, Sankey OF, Myles CW. Theoretical study of the lattice thermal conductivity in ge framework semiconductors. Phys Rev Lett. 2001;86:2361–4.CrossRefGoogle Scholar
  12. 12.
    Stourac L, Vasko A, Srb I, Musil C, Strba F. Phonon thermal conductivity of amorphous selenium doped by germanium. Czechoslov J Phys B. 1968;18:1067–73.CrossRefGoogle Scholar
  13. 13.
    Singh AK, Kumar P, Singh K, Saxena NS. Thermal transport in Se81Te15Sb4 chalcogenide glass. Chalcogenide Lett. 2006;3:139–44.Google Scholar
  14. 14.
    Sharma A, Mehta N. Analysis of composition dependence of some thermal transport properties in glassy Se80−xTe20Snx (0 ≤ x ≤ 10) alloys using transient plane source measurements. Measurement. 2013;46:514–20.CrossRefGoogle Scholar
  15. 15.
    Kamseu E, Ceron B, Tobias H, Leonelli E, Bignozzi MC, Muscio A, Libbra A. Insulating behavior of metakaolin-based geopolymer materials assess with heat flux meter and laser flash techniques. J Therm Anal Calorim. 2012;108:1189–99.CrossRefGoogle Scholar
  16. 16.
    Wang N, Zhang XR, Zhu DS, Gao JW. The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites. J Therm Anal Calorim. 2012;107:949–54.CrossRefGoogle Scholar
  17. 17.
    Saxena NS, Pradhan PR, Ladiwala GD, Bala K, Saxena MP. Defect dependence of thermal conductivity in imperfect rock salt crystals. In: Chawdari BVR, et al., editors. Solid state ionic materials and application. Singapore: World Scientific; 1992. p. 723–7.Google Scholar
  18. 18.
    Kumar S, Singh K. Effect of indium additive on thermal transport properties of Se–Te–Cd multi-component chalcogenide glasses. J Therm Anal Calorim. 2012;110:519–22.CrossRefGoogle Scholar
  19. 19.
    Gustafsson SE. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci Instrum. 1991;62:797–804.CrossRefGoogle Scholar
  20. 20.
    Carslaw HS, Jaeger JC. Conduction of heat in solids. 2nd ed. Oxford: Clarendon Press; 1959.Google Scholar
  21. 21.
    Fukunaga T, Tanaka Y, Murase K. Glass formation and vibrational properties in the (Ge, Sn) system. Solid State Commun. 1982;42:513–6.CrossRefGoogle Scholar
  22. 22.
    Stevens M, Boolchand P. Universal structural phase transition in network glasses. Phys Rev B. 1985;31:981–91.CrossRefGoogle Scholar
  23. 23.
    Misonou M, Endo H. Magnetic susceptibility of liquid Se–Te, Se–Tl, and Se–Ge mixtures. Ber Bunsenges Phys Chem. 1982;86:645–50.CrossRefGoogle Scholar
  24. 24.
    Phillips JC. Topology of covalent non-crystalline solids I: short-range order in chalcogenide alloys. J Noncryst Solid. 1979;34:153–81.CrossRefGoogle Scholar
  25. 25.
    Boolchand P, Stevens M. Evidence for isoelectronic Sn for Ge substitution in crystalline and glassy GeSe2. Phys Rev B. 1984;29:1–7.CrossRefGoogle Scholar
  26. 26.
    Stevens M, Grothaus J, Boolchand P, Hernandez JG. Universal structural phase transition in network glasses. Solid State Commun. 1983;47:199–202.CrossRefGoogle Scholar
  27. 27.
    Haruvi-Busnach I, Dror J, Croitoru N. Chalcogenide glasses Ge–Sn–Se, Ge–Se–Te, and Ge–Sn–Se–Te for infrared optical fibers. J Mater Res. 1990;5:1215–23.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Vandana Kumari
    • 1
  • Anusaiya Kaswan
    • 1
  • Dinesh Patidar
    • 1
  • Kananbala Sharma
    • 1
  • Narendra Sahai Saxena
    • 1
  1. 1.Semi-Conductor and Polymer Science Laboratory, Room No. 14-15, Department of PhysicsUniversity of RajasthanJaipurIndia

Personalised recommendations