Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 3, pp 1861–1869 | Cite as

Thermodynamic and kinetic properties of sorbitol-induced molten globule of myoglobin

  • Tadashi Kamiyama
  • Tomokadu Marutani
  • Dai Kato
  • Takuya Hamada
  • Keiichi Kato
  • Takayoshi Kimura


To reveal the contribution of hydrophobic interactions to the stability of the molten globule (MG) state of proteins, the effect of sorbitol on the structure of acid-unfolded (AU) equine heart myoglobin was examined at pH 2 by means of circular dichroism (CD), stopped-flow CD, rheometry, and differential scanning calorimetry. The AU state of myoglobin was refolded by adding sorbitol to the MG state, which had a secondary structure and hydrodynamic volume similar to the native (N) state. The thermal denaturation of the MG state showed considerably small enthalpy change, low cooperativity, and small heat capacity compared to the N state unlike MG state of cytochrome c, indicating that the presence of the heme is important to preserve the strict tertiary structure of MG state not only N state, for heme proteins. The refolding was induced by preferential exclusion of three sorbitol molecules from the AU state compared to the MG state. The transition from the N–MG state kinetically proceeded via the AU state, followed by gradual refolding due to the preferential exclusion of sorbitol with 1.98 × 10−3 s−1 of kinetic constant at 3.3 M sorbitol and 10.9 °C.


Molten globule Myoglobin Sorbitol DSC Preferential solvation 


  1. 1.
    Goto Y, Ichimura N, Hamaguchi K. Effects of ammonium sulfate on the unfolding and refolding of the variable and constant fragments of an immunoglobulin light chain. Biochemistry. 1988;27:1670–7.CrossRefGoogle Scholar
  2. 2.
    Ashikari Y, Arata Y, Hamaguchi K. pH-induced unfolding of the constant fragment of the immunoglobulin light chain: effect of reduction of the intrachain disulfide bond. J Biochem. 1985;97:517–28.Google Scholar
  3. 3.
    Baldwin RL. Temperature dependence of the hydrophobic interaction in protein folding. PNAS. 1986;83:8069–72.CrossRefGoogle Scholar
  4. 4.
    Vajpai N, Nisius L, Wiktor M, Grzesiek S. High-pressure NMR reveals close similarity between cold and alcohol protein denaturation in ubiquitin. Proc Natl Acad Sci USA. 2013;110:E368–76.CrossRefGoogle Scholar
  5. 5.
    Pappenberger G, Saudan C, Becker M, Merbach AE, Kiefhaber T. Denaturant-induced movement of the transition state of protein folding revealed by high-pressure stopped-flow measurements. PNAS. 2000;97:17–22.CrossRefGoogle Scholar
  6. 6.
    Kamiyama T, Satoh M, Tateishi T, Nojiri T, Takeushi D, Kimura T. Effects of modified β-Cyclodextrin on thermal stability and conformation of lysozyme. Thermochim Acta. 2012;532:10–4.CrossRefGoogle Scholar
  7. 7.
    Kamiyama T, Tanaka T, Satoh M, Kimura T. Destabilization of cytochrome c by modified β-cyclodextrin. J Therm Anal Calorim. 2013;113:1491–6.CrossRefGoogle Scholar
  8. 8.
    Ohgushi M, Wada A. `Molten-globule’ state: a compact form of globular proteins with mobile side-chains. FEBS Lett. 1983;164:21–4.CrossRefGoogle Scholar
  9. 9.
    Ptitsyn OB. Protein folding: hypotheses and experiments. J Protein Chem. 1987;6:273–93.CrossRefGoogle Scholar
  10. 10.
    Neumaier S, Kiefhaber T. Redefining the dry molten globule state of proteins. J Mol Biol. 2014;426:2520–8.CrossRefGoogle Scholar
  11. 11.
    Kuwajima K. The molten globule state of alpha-lactalbumin. FASEB J. 1996;10:102–9.Google Scholar
  12. 12.
    Baldwin RL, Rose GD. Molten globules, entropy-driven conformational change and protein folding. Curr Opin Struct Biol. 2013;23:4–10.CrossRefGoogle Scholar
  13. 13.
    Elms PJ, Chodera JD, Bustamante C, Marqusee S. The molten globule state is unusually deformable under mechanical force. Proc Natl Acad Sci USA. 2012;109:3796–801.CrossRefGoogle Scholar
  14. 14.
    Prajapati RS, Indu S, Varadarajan R. Identification and thermodynamic characterization of molten globule states of periplasmic binding proteins. Biochemistry. 2007;46:10339–52.CrossRefGoogle Scholar
  15. 15.
    Mukaiyama A, Nakamura T, Makabe K, Maki K, Goto Y, Kuwajima K. The molten globule of β2-microglobulin accumulated at pH 4 and its role in protein folding. J Mol Biol. 2013;425:273–91.CrossRefGoogle Scholar
  16. 16.
    Goto Y, Nishikori S. Role of electrostatic repulsion in the acidic molten globule. J Mol Biol. 1991;222:679–86.CrossRefGoogle Scholar
  17. 17.
    Hagihara Y, Tan Y, Goto Y. Comparison of the conformational stability of the molten globule and native states of horse cytochrome c: effects of acetylation, heat, urea and guanidine-hydrochloride. J Mol Biol. 1994;237:336–48.CrossRefGoogle Scholar
  18. 18.
    Kelkar DA, Chaudhuri A, Haldar S, Chattopadhyay A. Exploring tryptophan dynamics in acid-induced molten globule state of bovine alpha-lactalbumin: a wavelength-selective fluorescence approach. Eur Biophys J Biophy. 2010;39:1453–63.CrossRefGoogle Scholar
  19. 19.
    Nakamura S, Kidokoro S. Volumetric properties of the molten globule state of cytochrome c on the thermal three-state transition evaluated by pressure perturbation calorimetry. J Phys Chem B. 2012;116:1927–32.CrossRefGoogle Scholar
  20. 20.
    Kamiyama T, Sadahide Y, Nogusa Y, Gekko K. Polyol-induced molten globule of cytochrome c: an evidence for stabilization by hydrophobic interaction. Biochim Biophys Acta. 1999;1434:44–57.CrossRefGoogle Scholar
  21. 21.
    Jennings PA, Wright PE. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science. 1993;262:892–6.CrossRefGoogle Scholar
  22. 22.
    Uzawa T, Nishimura C, Akiyama S, Ishimori K, Takahashi S, Dyson HJ, Wright PE. Hierarchical folding mechanism of apomyoglobin revealed by ultra-fast H/D exchange coupled with 2D NMR. Proc Natl Acad Sci USA. 2008;105:13859–64.CrossRefGoogle Scholar
  23. 23.
    Nishii I, Kataoka M, Goto Y. Cold Denaturation of the molten globule states of apomyoglobin and a profile for protein folding. Biochemistry. 1994;33:4903–9.CrossRefGoogle Scholar
  24. 24.
    Nishii I, Kataoka M, Goto Y. Thermodynamic stability of the molten globule states of apomyoglobin. J Mol Biol. 1995;250:223–38.CrossRefGoogle Scholar
  25. 25.
    Nishimura C, Dyson HJ, Wright PE. Energetic frustration of apomyoglobin folding: role of the B helix. J Mol Biol. 2010;396:1319–28.CrossRefGoogle Scholar
  26. 26.
    Bowen WJ. The absorption spectra and extinction coefficients of myoglobin. J Biol Chem. 1949;179:235–45 (from Sigma Product Information).Google Scholar
  27. 27.
    Fasman GD, editor. Circular dichroism and the conformational analysis of biomolecules. New York: Plenum Press; 1996.Google Scholar
  28. 28.
    Pace CN. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1985;131:267–80.Google Scholar
  29. 29.
    Ramos CHI, Kay MS, Baldwin RL. Putative interhelix ion pairs involved in the stability of myoglobin. Biochemistry. 1999;38:9783–90.CrossRefGoogle Scholar
  30. 30.
    Privalov PL. Stability of proteins small globular proteins. Adv Protein Chem. 1979;33:167–241.Google Scholar
  31. 31.
    Privalov PL. Stability of proteins: proteins which do not present a single cooperative system. Adv Protein Chem. 1982;35:1–104.CrossRefGoogle Scholar
  32. 32.
    Tanford C, Kawahara K, Lapanje S. Proteins as random coils. II. Hydrogen ion titration curve of ribonuclease in 6 M guanidine hydrochloride. J Am Chem Soc. 1967;89:729–36.CrossRefGoogle Scholar
  33. 33.
    Gekko K, Timasheff SN. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry. 1981;20:4667–76.CrossRefGoogle Scholar
  34. 34.
    Cohen G, Eisenberg H. Deoxyribonuclease solutions: sedimentation in a density gradient, partial specific volumes, density and refractive index increments, and preferential interactions. Biopolymers. 1968;6:1077–100.CrossRefGoogle Scholar
  35. 35.
    Wyman J. Linked functions and reciprocal effects in hemoglobin: a second look. Adv Protein Chem. 1964;19:223–86.CrossRefGoogle Scholar
  36. 36.
    Tanford C. Extension of the theory of linked function to incorporate the effects of protein hydration. J Mol Biol. 1969;39:539–44.CrossRefGoogle Scholar
  37. 37.
    Timasheff SN, Xie G. Preferential interactions of urea with lysozyme and their linkage to protein denaturation. Biophys Chem. 2003;105:421–48.CrossRefGoogle Scholar
  38. 38.
    Konermann L, Rosell FI, Mauk AG, Douglas DJ. Acid-induced denaturation of myoglobin studied by time-resolved electrospray ionization mass spectrometry. Biochemistry. 1997;36:6448–54.CrossRefGoogle Scholar
  39. 39.
    Sogbein OO, Simmons DA, Konermann L. Effects of pH on the kinetic reaction mechanism of myoglobin unfolding studied by time-resolved electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 2000;11:312–9.CrossRefGoogle Scholar
  40. 40.
    Hagen SJ. Solvent viscosity and friction in protein folding dynamics. Curr Protein Pept Sci. 2010;11:385–95.CrossRefGoogle Scholar
  41. 41.
    Tang X, Pikal MJ. Measurement of the kinetics of protein unfolding in viscous systems and implications for protein stability in freeze-drying. Pharm Res. 2005;22:1176–85.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Tadashi Kamiyama
    • 1
  • Tomokadu Marutani
    • 1
  • Dai Kato
    • 1
  • Takuya Hamada
    • 1
  • Keiichi Kato
    • 1
  • Takayoshi Kimura
    • 1
  1. 1.Department of Chemistry, School of Science and EngineeringKinki UniversityHigashiōsakaJapan

Personalised recommendations