Journal of Thermal Analysis and Calorimetry

, Volume 122, Issue 1, pp 315–322 | Cite as

Interactions between inorganic pigments and rabbit skin glue in reference paint reconstructions

  • Lisa Ghezzi
  • Celia Duce
  • Luca Bernazzani
  • Emilia Bramanti
  • Maria Perla Colombini
  • Maria Rosaria Tiné
  • Ilaria Bonaduce


The thermal degradation of rabbit skin glue, a collagen-based proteinaceous material used as a paint binder in paintings, was investigated in this paper. Paint reconstructions of the glue on its own or mixed with azurite (Cu3(CO3)2(OH)2), calcium carbonate (CaCO3), hematite (Fe2O3·nH2O) and red lead (Pb3O4) were analysed using a thermoanalytical approach. This method enabled us to investigate the interactions between the glue and pigments before and after artificial indoor light ageing. The study was carried out using differential scanning calorimetry, thermogravimetry and thermogravimetry/FTIR analysis already successfully employed to characterize the paint binders. The results highlighted that all the inorganic pigments interact with rabbit skin glue, thus decreasing the thermal stability of the binder. Light ageing further decreased the thermal stability of pigmented paint replicas, suggesting a moderate increase in the rate of the degradation.


Rabbit skin glue Azurite Calcium carbonate Hematite and red lead Thermogravimetric analysis Differential scanning calorimetry 



This work was supported by PRIN 2008 (Project No. 2008XXAMZT) and PRIN 2010/2011 (Project No. 2010329WPF) funding from the Italian Ministry of University and Research.


  1. 1.
    Brecoulaki H, Andreotti A, Bonaduce I, Colombini MP, Tenorio AL. Characterization of organic media in the wall-paintings of the “Palace of Nestor” at Pylos, Greece: evidence for a secco painting techniques in the Bronze Age. J Archaeol Sci. 2012;39:2866–76.CrossRefGoogle Scholar
  2. 2.
    Colombini MP, Andreotti A, Bonaduce I, Modugno F, Ribechini E. Analytical strategies for characterising organic paint media using GC–MS. Acc Chem Res. 2010;43:715–27.CrossRefGoogle Scholar
  3. 3.
    Bonaduce I, Colombini MP, Diring S. Identification of garlic in old gildings by gas chromatography–mass spectrometry. J Chromatogr A. 2006;1107:226–32.CrossRefGoogle Scholar
  4. 4.
    Fraser D, DeRoo CS, Codyc RB, Armitaged RA. Characterization of blood in an encrustation on an African mask: spectroscopic and direct analysis in real time mass spectrometric identification of haem. Analyst. 2013;138:4470–4.CrossRefGoogle Scholar
  5. 5.
    Mazel V, Richardin P, Debois D, Touboul D, Cotte M, Brunelle A, Walter P, Laprévote O. Identification of ritual blood in African artifacts using TOF-SIMS and synchrotron radiation microspectroscopies. Anal Chem. 2007;79:9253–60.CrossRefGoogle Scholar
  6. 6.
    Carr DW. Andrea Mantegna, the Adoration of the Magi. Getty Museum Studies on Art Los Angeles, Christopher Hudson, Publisher, Mollie Holtman, editor; 1997.Google Scholar
  7. 7.
    Nevin A, Comelli D, Valentini G, Anglos D, Burnstock A, Cather SCR. Time-resolved fluorescence spectroscopy and imaging of proteinaceous binders used in paintings. Anal Bioanal Chem. 2007;388:1897–905.CrossRefGoogle Scholar
  8. 8.
    Nevin A, Osticioli I, Anglos D, Burnstock A, Cather S, Castellucci E. The analysis of naturally and artificially aged protein based paint media using Raman spectroscopy combined with principal component analysis. J Raman Spectrosc. 2008;39:993–1000.CrossRefGoogle Scholar
  9. 9.
    Vandenabeele P, Edwards HGM, Moens L. A decade of Raman spectroscopy in art and archaeology. Chem Rev. 2007;107:675–86.CrossRefGoogle Scholar
  10. 10.
    Rosi F, Daveri A, Miliani C, Verri G, Benedetti P, Pique F, Brunetti BG, Sgamellotti A. Non-invasive identification of organic materials in wall paintings by fiber optic reflectance infrared spectroscopy: a statistical multivariate approach. Anal Bioanal Chem. 2009;395:2097–106.CrossRefGoogle Scholar
  11. 11.
    Cartechini L, Vagnini M, Palmieri M, Pitzurra L, Mello T, Mazurek J, Chiari G. Immunodetection of proteins in ancient paint media. Acc Chem Res. 2010;43:867–76.CrossRefGoogle Scholar
  12. 12.
    Gambino M, Cappitelli F, Cattò C, Carpen A, Principi P, Ghezzi L, Bonaduce I, Galano E, Pucci P, Birolo L, Villa F, Forlani F. A simple and reliable methodology to detect egg white in art samples. J Biosci. 2013;38:397–408.CrossRefGoogle Scholar
  13. 13.
    Sciutto G, Litti L, Lofrumento C, Prati S, Ricci M, Gobbo M, Roda A, Castellucci E, Meneghetti M, Mazzeo R. Alternative SERRS probes for the immunochemical localization of ovalbumin in paintings: an advanced mapping detection approach. Analyst. 2013;138:4532–41.CrossRefGoogle Scholar
  14. 14.
    Schilling MR, Khanjian HP, Souza LAC. Gas chromatographic analysis of amino acids as ethyl chloroformate derivatives. Part 2, effects of pigments and accelerated aging on the identification of proteinaceous binding media. J Am Inst Conserv. 1996;35:45–59.CrossRefGoogle Scholar
  15. 15.
    De la Cruz-Canizares J, Domenech-Carbo MT, Gimeno-Adelantado JV, Mateo-Castro R, Bosch-Reig F. Suppression of pigment interference in the gas chromatographic analysis of proteinaceous binding media in paintings with EDTA. J Chromatogr A. 2004;1025:277–85.CrossRefGoogle Scholar
  16. 16.
    Dallongeville S, Koperska M, Garnier N, Reille-Taillefert G, Rolando C, Tokarski C. Identification of animal glue species in artworks using proteomics: application to a 18th century gilt sample. Anal Chem. 2011;83:9431–7.CrossRefGoogle Scholar
  17. 17.
    Leo G, Bonaduce I, Andreotti A, Marino G, Pucci P, Colombini MP, Birolo L. Deamidation at asparagine and glutamine as a major modification upon deterioration/aging of proteinaceous binders in mural paintings. Anal Chem. 2011;83:2056–64.CrossRefGoogle Scholar
  18. 18.
    Kuckova S, Hynek R, Kodicek M. Identification of proteinaceous binders used in artworks by MALDI-TOF mass spectrometry. Anal Bioanal Chem. 2007;388:201–6.CrossRefGoogle Scholar
  19. 19.
    Werf IDvd, Calvano CD, Palmisano F, Sabbatini L. A simple protocol for Matrix Assisted Laser Desorption Ionization-time of flight-mass spectrometry (MALDI-TOF-MS) analysis of lipids and proteins in single microsamples of paintings. Anal Chim Acta. 2012;718:1–10.CrossRefGoogle Scholar
  20. 20.
    Manzano E, Romero-Pastor J, Navas N, Rodriguez-Simon LR, Cardell C. A study of the interaction between rabbit glue binder and blue copper pigment under UV radiation: a spectroscopic and PCA approach. Vib Spectrosc. 2010;53:260–8.CrossRefGoogle Scholar
  21. 21.
    Nevin A, Anglos D, Cather S, Burnstock A. The influence of visible light and inorganic pigments on fluorescence excitation emission spectra of egg-, casein- and collagen-based painting media. Appl Phys A-Mater. 2008;92:69–76.CrossRefGoogle Scholar
  22. 22.
    Bonaduce I, Cito M, Colombini MP. The development of a gas chromatographic-mass spectrometric analytical procedure for the determination of lipids, proteins and resins in the same paint micro-sample avoiding interferences from inorganic media. J Chromatogr A. 2009;1216:5931–9.CrossRefGoogle Scholar
  23. 23.
    Romero-Pastor J, Navas N, Kuckova S, Rodríguez-Navarro A, Cardell C. Collagen-based proteinaceous binder-pigment interaction study under UV ageing conditions by MALDI-TOF-MS and principal component analysis. J Mass Spectrom. 2012;47:322–30.CrossRefGoogle Scholar
  24. 24.
    Duce C, Ghezzi L, Onor M, Bonaduce I, Colombini MP, Tine MR, Bramanti E. Physico-chemical characterization of protein-pigment interactions in tempera paint reconstructions: casein/cinnabar and albumin/cinnabar. Anal Bioanal Chem. 2012;402:2183–93.CrossRefGoogle Scholar
  25. 25.
    Duce C, Bramanti E, Ghezzi L, Bernazzani L, Bonaduce I, Colombini MP, Spepi A, Biagi S, Tine MR. Interaction between inorganic pigments and proteinaceous binders in reference paint reconstructions. Dalton Trans. 2013;42:5975–84.CrossRefGoogle Scholar
  26. 26.
    Veis A, Cohen J. Nonrandom disaggregation of intact skin collagen. J Am Chem Soc. 1956;78:6238–44.CrossRefGoogle Scholar
  27. 27.
    Pourdier J. Status of knowledge of the constitution of gelatin. Sci Ind Photogr. 1948;19:81–91.Google Scholar
  28. 28.
    Pires J, Cruz AJ. Techniques of thermal analysis applied to the study of cultural heritage. J Therm Anal Calorim. 2007;87:411–4.CrossRefGoogle Scholar
  29. 29.
    Prati S, Chiavari G, Cam D. DSC application in the conservation field. J Therm Anal Calorim. 2001;66:315–27.CrossRefGoogle Scholar
  30. 30.
    Bonaduce I, Carlyle L, Colombini MP, Duce C, Ferrari C, Ribechini E, Selleri P, Tiné MR. A multi-analytical approach to studying binding media in oil paintings. Characterisation of differently pre-treated linseed oil by DE–MS, TG, and GC/MS. J Therm Anal Calorim. 2012;107:1055–66.CrossRefGoogle Scholar
  31. 31.
    Bonaduce I, Carlyle L, Colombini MP, Duce C, Ferrari C, Ribechini E, Selleri P, Tiné MR. New insights into the ageing of linseed oil paint binder: a qualitative and quantitative analytical study. PLoS ONE. 2012;7:e49333.CrossRefGoogle Scholar
  32. 32.
    Duce C, Bernazzani L, Bramanti E, Spepi A, Colombini MP, Tiné MR. Alkyd artists’ paints: do pigments affect the stability of the resin? A TG and DSC study on fast-drying oil colours. Polym Degrad Stabil. 2014;105:48–58.CrossRefGoogle Scholar
  33. 33.
    Cavallaro G, Donato DI, Lazzara G, Milioto S. A comparative thermogravimetric study of waterlogged archaeological and sound woods. J Therm Anal Calorim. 2011;104:451–7.CrossRefGoogle Scholar
  34. 34.
    Odlyha M, Cohen NS, Foster GM, West RH. Dosimetry of paintings: determination of the degree of chemical change in museum exposed test paintings (azurite tempera) by thermal and spectroscopic analysis. J Therm Anal Calorim. 2000;365:53–63.Google Scholar
  35. 35.
    Cucos A, Budrugeac P. Simultaneous TG/DTG–DSC–FTIR characterization of collagen in inert and oxidative atmospheres. J Therm Anal Calorim. 2014;115:2079–87.CrossRefGoogle Scholar
  36. 36.
    Mocanu AM, Moldoveanu C, Odochian L, Paius CM, Apostolescu N, Neculau R. Study on the thermal behavior of casein under nitrogen and air atmosphere by means of the TG-FTIR technique. Thermochim Acta. 2012;546:120–6.CrossRefGoogle Scholar
  37. 37.
    Fraga A, Williams R. Thermal properties of gelatin films. Polymer. 1985;26(1):113–8.CrossRefGoogle Scholar
  38. 38.
    Sanders JP, Gallagher PK. Kinetic analyses using simultaneous TG/DSC measurements: part I: decomposition of calcium carbonate in argon. Thermochim Acta. 2002;388:115–28.CrossRefGoogle Scholar
  39. 39.
    Kaml I, Vcelakova K, Kenndler E. Characterisation and identification of proteinaceous binding media (animal glues) from their amino acid profile by capillary zone electrophoresis. J Sep Sci. 2004;27:161–6.CrossRefGoogle Scholar
  40. 40.
    Abraham LC, Zuena E, Ramirez BP, Kaplan DL. Guide to collagen characterization for biomaterial studies. J Biomed Mater Res Part B: Appl Biomater. 2008;87B:264–85.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Lisa Ghezzi
    • 1
  • Celia Duce
    • 1
  • Luca Bernazzani
    • 1
  • Emilia Bramanti
    • 2
  • Maria Perla Colombini
    • 1
  • Maria Rosaria Tiné
    • 1
  • Ilaria Bonaduce
    • 1
  1. 1.Dipartimento di Chimica e Chimica IndustrialeUniversity of PisaPisaItaly
  2. 2.Istituto di Chimica dei Composti Organo Metallici-ICCOM- UOS PisaNational Research Council of Italy, C.N.R.PisaItaly

Personalised recommendations