Journal of Thermal Analysis and Calorimetry

, Volume 122, Issue 2, pp 665–677 | Cite as

Studies of thermal decomposition kinetics and temperature dependence of thermodynamic functions of the new precursor LiNiPO4·3H2O for the synthesis of olivine LiNiPO4

  • Saifon Kullyakool
  • Khatcharin Siriwong
  • Pittayagorn Noisong
  • Chanaiporn Danvirutai


The olivine LiNiPO4 was synthesized via the calcination of the new precursor LiNiPO4·3H2O at 600 °C. The precursor was obtained from low-temperature (50 °C) wet chemical reaction. The results from XRD, FTIR, AAS/AES and TG/DTG/DTA techniques confirmed the formula of the title compounds. The SEM results indicated the morphologies of the hydrate precursor as thin plate particles and the calcined product as small bead particles. The BET surface area of the final calcined product at 600 °C is much higher (5.807 m2 g−1) than that reported in the literature (0.25 m2 g−1). The kinetic triplet [activation energy, E, pre-exponential factor, A, and the most probable mechanism function, g(α)] and the thermodynamic functions of activated complexes (ΔS , ΔH and ΔG ) for the dehydration step of LiNiPO4·3H2O were determined and discussed. The mechanism of the dehydration process is the single-step A3/2 (assumed random nucleation and its subsequent growth). New information, namely the isobaric molar heat capacity, experimental entropy, enthalpy and Gibbs energy changes as function of temperature (K) of LiNiPO4·3H2O and LiNiPO4, was evaluated from the DSC data by third-order polynomial fitting and reported for the first time. The calculated corresponding thermodynamic functions from kinetic parameters are compared and discussed.


LiNiPO4·3H2LiNiPO4 Kinetic study Experimental thermodynamic functions Temperature dependence of isobaric heat capacity 



The authors would like to thank the Materials Chemistry Research Center, Department of Chemistry, The Center for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, the Higher Education Research Promotion and National Research University Project of Thailand, Office of Higher Education Commission, through the Advanced Functional Materials Cluster Khon Kaen University, for financial supports.

Supplementary material

10973_2015_4746_MOESM1_ESM.docx (336 kb)
Supplementary material 1 (DOCX 336 kb)


  1. 1.
    Manthiram A, Goodenough JB. Lithium insertion into Fe2(MO4)3 frameworks: comparison of M=W with M=Mo. J Solid State Chem. 1987;71(2):349–60.CrossRefGoogle Scholar
  2. 2.
    Padhi AK, Nanjiundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144(4):1188–94.CrossRefGoogle Scholar
  3. 3.
    Osorio-Gullén JM, Hilm B, Ahuja R, Johnansson B. A theoretical study of olivine LiMPO4 cathodes. Solid State Ion. 2004;167:221–7.CrossRefGoogle Scholar
  4. 4.
    Zhou F, Cococcioni M, Kang K, Ceder G. The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M=Fe, Mn, Co, Ni. Electrochem Commun. 2004;6:1144–8.CrossRefGoogle Scholar
  5. 5.
    Julien CM, Mauger A, Zaghib K, Vellette R, Groult H. Structural and electronic properties of the LiNiPO4 orthophosphate. Ionics. 2012;18:625–33.CrossRefGoogle Scholar
  6. 6.
    Kuang H, Yin SC, Nazar LF. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid State Lett. 2001;4(10):A170–2.CrossRefGoogle Scholar
  7. 7.
    Chung SY, Bloking JT, Chiang YM. Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater. 2002;1:123–8.CrossRefGoogle Scholar
  8. 8.
    Ni JF, Zhou HH, Chen JT, Zhang XX. LiFePO4 doped with ions prepared by co-precipitation method. Mater Lett. 2005;59:2361–5.CrossRefGoogle Scholar
  9. 9.
    Wang GX, Needham S, Yao J, Wang JZ, Liu RS, Liu KH. A study on LiFePO4 and its doped derivatives as cathode materials for lithium-ion batteries. J Power Sources. 2006;159:282–6.CrossRefGoogle Scholar
  10. 10.
    Shi SQ, Liu LJ, Ouyang CY. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Phys Rev B. 2003;68:195108.CrossRefGoogle Scholar
  11. 11.
    Wu Y, Wen Z, Li J. Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv Mater. 2011;23(9):1126–9.CrossRefGoogle Scholar
  12. 12.
    Nguyen VH, Wang WL, Jin EM, Gu HB. Electrochemical characterization of LiFePO4/poly (sodium 4-styrenesulfonate)-multi walled carbon nanotube composite cathode material for lithium ion batteries. J Alloy Compd. 2013;569:29–34.CrossRefGoogle Scholar
  13. 13.
    Fisher CAJ, Prieto VMH, Islam MS. Lithium battery materials LiMPO4 (M=Mn, Fe Co, and Ni): insights into defect association, transport mechanisms, and doping behavior. Chem Mater. 2008;20:5907–15.CrossRefGoogle Scholar
  14. 14.
    Minakshi M, Singh P, Appadoo D, Martin DE. Synthesis and characterization of olivine LiNiPO4 for aqueous rechargeable battery. Electrochimi Acta. 2011;56:4356–60.CrossRefGoogle Scholar
  15. 15.
    Prabu M, Selvasekarapandian S, Kulkkarni AR, Karthikeyan S, Sanjeeviraja C. Influence of europium doping on conductivity of LiNiPO4. Trans Nonferrous Met Soc China. 2012;22:342–7.CrossRefGoogle Scholar
  16. 16.
    Wolfenstine J, Allen J. Ni3+/Ni2+ redox potential in LiNiPO4. J Power Sources. 2005;142:389–90.CrossRefGoogle Scholar
  17. 17.
    Jugović D, Uskoković D. A review of recent developments in the synthesis procedures of lithium iron phosphate powders. J Power Sources. 2009;190:538–44.CrossRefGoogle Scholar
  18. 18.
    Fergus JW. Recent developments in cathode materials for lithium ion batteries. J Power Sources. 2010;195:939–54.CrossRefGoogle Scholar
  19. 19.
    Abouimrane A, Belharouak I, Amine K. Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochem Commun. 2009;11:1073–6.CrossRefGoogle Scholar
  20. 20.
    Sun X, Angell A. Doped sulfone electrolytes for high voltage Li-ion cell applications. Electrochem Commun. 2009;11:1418–21.CrossRefGoogle Scholar
  21. 21.
    Prabu M, Selvasekarapandian S. Dielectric and modulus studies of LiNiPO4. Mater Chem Phys. 2012;134:366–70.CrossRefGoogle Scholar
  22. 22.
    Karthickprabhu S, Hirankumar G, Maheswaran A, Sanjeeviraja C, Bella RSD. Structural and conductivity studies on LiNiPO4 synthesized by the polyol method. J Alloy Compd. 2013;548:65–9.CrossRefGoogle Scholar
  23. 23.
    Kullyakool S, Danvirutai C, Siriwong K, Noisong P. Thermal behaviour, surface properties and vibrational spectroscopic studies of the synthesized Co3xNi3−3x(PO4)2·8H2O (0 < x < 1). Solid State Sci. 2013;24:147–53.CrossRefGoogle Scholar
  24. 24.
    Cullity BD. Elements of X-ray diffraction. 2nd ed. New York: Addison-Wesley; 1977.Google Scholar
  25. 25.
    Noisong P, Danvirutai C, Srithanyaratana T, Boonchom B. Synthesis, characterization and non-isothermal decomposition kinetics of manganese hypophosphite monohydrate. Solid State Sci. 2008;10:1598–604.CrossRefGoogle Scholar
  26. 26.
    Kullyakool S, Danvirutai C, Siriwong K, Noisong P. Determination of kinetic triplet of the synthesized Ni3(PO4)2·8H2O by non-isothermal and isothermal kinetic methods. J Therm Anal Calorim. 2014;115:1490–507.CrossRefGoogle Scholar
  27. 27.
    Khanwan A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem. 2006;110:17315–28.CrossRefGoogle Scholar
  28. 28.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  29. 29.
    Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.CrossRefGoogle Scholar
  30. 30.
    Madhysudanan PM, Krishnan K, Ninan KN. New approximation for the p(x) function in the evaluation of non-isothermal kinetic data. Thermochim Acta. 1986;97:189–201.CrossRefGoogle Scholar
  31. 31.
    Madhysudanan PM, Krishnan K, Ninan KN. New equations for kinetic analysis of non-isothermal reactions. Thermochim Acta. 1993;221:13–21.CrossRefGoogle Scholar
  32. 32.
    Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.CrossRefGoogle Scholar
  33. 33.
    Wanjun T, Yuwen L, Hen Z, Zhiyong W, Cunxin W. New temperature integral approximate formula for non-isothermal kinetic analysis. J Therm Anal Calorim. 2003;74:309–15.CrossRefGoogle Scholar
  34. 34.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  35. 35.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand Sec A. 1966;70A(6):487–523.CrossRefGoogle Scholar
  36. 36.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  37. 37.
    Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Tech. 1964;20:22–3.Google Scholar
  38. 38.
    Senum GI, Yang RT. Rational approximation of the integral of the Arrhenius function. J Therm Anal Calorim. 1977;11:445–7.CrossRefGoogle Scholar
  39. 39.
    Flynn JH. The ‘temperature integral’—its use and abuse. Thermochim Acta. 1997;300:83–92.CrossRefGoogle Scholar
  40. 40.
    Genieva SD, Vlaev LT, Atanassov AN. Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedures. J Therm Anal Calorim. 2010;99:551–61.CrossRefGoogle Scholar
  41. 41.
    Chen ZP, Chai Q, Liao S, He Y, Li Y, Bo XH, Wu WW, Li B. Application of isoconversional calculation procedure to non-isothermal kinetic study. III. Thermal decomposition of ammonium cobalt phosphate hydrate. Thermochim Acta. 2012;543:205–10.CrossRefGoogle Scholar
  42. 42.
    Noisong P, Danvirutai C. Kinetics and mechanism of thermal dehydration of KMnPO4·H2O in a nitrogen atmosphere. Ind Eng Chem Res. 2010;49:3146–51.CrossRefGoogle Scholar
  43. 43.
    Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrolysis. 2008;81(2):253–62.CrossRefGoogle Scholar
  44. 44.
    Chen Z, Chai Q, Liao S, He Y, Li Y, Bo X, Wu WW, Li B. Preparation of LiZn0.9PO4:Mn0.1·H2O via a simple and novel method and its non-isothermal kinetics using iso-conversional calculation procedure. Thermochim Acta. 2012;533:74–80.CrossRefGoogle Scholar
  45. 45.
    Boonchom B, Youngme S, Srithanratana T, Danvirutai C. Synthesis of AlPO4 and kinetics of thermal decomposition of AlPO4·H2O-H4 precursor. J Therm Anal Calorim. 2008;91:511–6.CrossRefGoogle Scholar
  46. 46.
    Karunakaran C, Chidambaranathan V. Linear free energy relationships near isokinetic temperature. Oxidation of organic sulfides with nicotinium dichromate. Croat Chem Acta. 2001;74(1):51–9.Google Scholar
  47. 47.
    Galwey AK, Brown ME. Arrhenius parameter and compensation behaviour in solid-state decompositions. Thermochim Acta. 1997;300:107–15.CrossRefGoogle Scholar
  48. 48.
    Boonchom B, Danvirutai C. Thermal decomposition kinetics of FePO4·3H2O precursor to synthesize spherical nanoparticles FePO4. Ind Eng Chem Res. 2007;46:9071–6.CrossRefGoogle Scholar
  49. 49.
    Vlase T, Vlase S, Doca M, Doca N. Specificity of decomposition of solids in non-isothermal conditions. J Therm Anal Calorim. 2003;72:597–604.CrossRefGoogle Scholar
  50. 50.
    Mianowski A, Marecka A. The isokinetic effect as related to the activation energy for the gases diffusion in coal at ambient temperatures. J Therm Anal Calorim. 2009;95:285–92.CrossRefGoogle Scholar
  51. 51.
    Ioitescu A, Vlase G, Vlase T, Doca N. Kinetics of decomposition of different acid calcium phosphates. J Therm Anal Calorim. 2007;88:121–5.CrossRefGoogle Scholar
  52. 52.
    Rooney JJ. Isokinetic temperature and the compensation effect in catalysis. J Mol Catal A Chem. 1998;133:303–5.CrossRefGoogle Scholar
  53. 53.
    Eyring H. The activated complex in chemical reactions. J Chem Phys. 1953;3:107–16.CrossRefGoogle Scholar
  54. 54.
    Rooney JJ. The extended Eyring kinetic equation and the compensation effect in catalysis. J Mol Catal A Chem. 1998;129:131–4.CrossRefGoogle Scholar
  55. 55.
    Reddy RG, Wang T, Mantha D. Thermodynamic properties of potassium nitrate-magnesium nitrate compound [2KNO3Mg(NO3)2]. Thermochim Acta. 2012;531:6–11.CrossRefGoogle Scholar
  56. 56.
    Królikowska M, Paduszyński K, Hofman T, Antonowicy J. Heat capacities and excess enthalpies of the (N-hexylisoquinolinium thiocyanate ionic liquid + water) binary systems. J Chem Thermodyn. 2012;55:144–50.CrossRefGoogle Scholar
  57. 57.
    Leitner J, Šipula I, Půžička K, Sedmidubský D, Svoboda P. Heat capacity, enthalpy and entropy of strontium niobates Sr2Nb10O27 and Sr5Nb4O15. J Alloy Compd. 2009;481:35–9.CrossRefGoogle Scholar
  58. 58.
    Sorai M. Comprehensive handbook of calorimetry & thermal analysis. London: Wiley; 2005.Google Scholar
  59. 59.
    Jenkins HDB. Chemical thermodynamics at a glance. Oxford: Blackwell; 2008.CrossRefGoogle Scholar
  60. 60.
    Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Saifon Kullyakool
    • 1
  • Khatcharin Siriwong
    • 2
  • Pittayagorn Noisong
    • 2
  • Chanaiporn Danvirutai
    • 1
  1. 1.Materials Chemistry Research Center, Center for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Advanced Functional Materials Research ClusterKhon Kaen UniversityKhon KaenThailand
  2. 2.Department of Chemistry, Faculty of Science, Materials Chemistry Research CenterKhon Kaen UniversityKhon KaenThailand

Personalised recommendations