Journal of Thermal Analysis and Calorimetry

, Volume 122, Issue 1, pp 189–195 | Cite as

Thermal and kinetic parameters of 30Li2O–55B2O3–5ZnO–xTiO2–(10−x)V2O5 (0 ≤ x ≤ 10) glasses

Article

Abstract

In the present investigation, the effects of titanium and vanadium concentration on the thermal properties have been studied for 30Li2O–55B2O3–5ZnO–xTiO2–(10−x)V2O5 (0 ≤ x ≤ 10) glasses. To understand the crystallization mechanics, activation energy has been calculated using two different approaches, i.e., Kissinger model and Augis and Bennett model. Using the derivative differential thermal analysis, the inflection point temperature (T f) and crystallization constants k y(T) and k f(T), for different heating rates, have also been obtained for all the glasses. Furthermore, kinetic parameters such as fluctuation free volume (f g) and change in bulk thermal expansion coefficient (α f) have been calculated for all the glass samples. The replacement of V2O5 by TiO2 induces phase separation in glasses.

Keywords

Glasses Activation energy Lasocka parameters Crystallization constants Frequency Derivative differential thermal analysis 

Notes

Acknowledgement

Authors are thankful to Dr. G. Kaur and Mr. Gourav Singla for their help to carry out DTA measurement and valuable discussion.

References

  1. 1.
    Arya SK, Kaur B, Kaur G, Singh K, Optical and thermal properties of (70−x)SiO2xNa2O–CaO–Al2O3–5TiO2(10 ≤ x ≤ 25) glasses. J Therm Anal Calorim doi:  10.1007/s10973-015-2392-8
  2. 2.
    Gathania AK, Dhiman N, Sharma A, Singh BP. Development and annealing of colloidal multilayer structures of silica microspheres. Colloids Surf A. 2011;378:34–7.CrossRefGoogle Scholar
  3. 3.
    Wers E, Oudadesse H, Lefeuvre B, Lucas-Girot A, Rocherullé J, Lebullenger R. Excess entropy and thermal behavior of Cu- and Ti-doped bioactive glasses. J Therm Anal Calorim. 2014;117:579–88.CrossRefGoogle Scholar
  4. 4.
    Brow RK, Tallant DR. Solids structural design of sealing glasses. J Non-Cryst. 1997;222:396–406.CrossRefGoogle Scholar
  5. 5.
    Kaur G, Kumar V, Pandey OP, Singh K. Thermodynamic stability of yttrium alkaline earth borosilicate glasses and their compatibility with Crofer for SOFC. J Electrochem Soc. 2012;159:B277–84.CrossRefGoogle Scholar
  6. 6.
    Lahl N, Singh K, Singheiser L, Hilpert K, Bahadur D. Crystallisation kinetics in AO–Al2O3–SiO2–B2O3 glasses (A = Ba, Ca, Mg). J Mater Sci. 2000;35:3089–96.CrossRefGoogle Scholar
  7. 7.
    Imran MMA, Bhandari D, Saxena NS. Glass transition phenomena, crystallization kinetics and thermodynamic properties of ternary Se80Te20−xInx (x = 2, 4, 6, 8 and 10) semiconducting glasses: theoretical and experimental aspects. Mater Sci Eng A. 2000;292:56–65.CrossRefGoogle Scholar
  8. 8.
    Hruby A. Evaluation of glass-forming tendency by means of DTA Czech. J Phys B. 1972;22:1187–93.Google Scholar
  9. 9.
    Saad M, Poulain M. Fluoride glass synthesis by sol–gel process. J Non-Cryst Solids. 1995;184:352–5.CrossRefGoogle Scholar
  10. 10.
    Bo ZL, Zhu JQ, Dong DK. Crystallization kinetics of InF3 based glass by differential scanning calorimetry. J Non-Cryst Solids. 1996;201:47–51.CrossRefGoogle Scholar
  11. 11.
    Moynihan CT, Lee SK, Tatsumisago M, Minami T. Estimation of activation energies for structural relaxation and viscous flow from DTA and DSC experiments. Thermochim Acta. 1996;280:153–62.CrossRefGoogle Scholar
  12. 12.
    Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal Calorim. 1978;13:283–92.CrossRefGoogle Scholar
  13. 13.
    Piloyan GO, Rybachikov JD, Novikova OS. Determination of activation energies of chemical reactions by differential thermal analysis. Nature. 1996;212:1229–31.CrossRefGoogle Scholar
  14. 14.
    Goel A, Shabaan ER, Mela FCL, Ribeiro MJ, Ferreira JMF. Non isothermal crystallization studies on MgO–Al2O3–SiO2–TiO2 glass. J Non-Cryst Solids. 2007;353:2383–91.CrossRefGoogle Scholar
  15. 15.
    Choi HW, Yang YS. Non-isothermal crystallization kinetics of BaTiO3–(Li2B4O7–ZnO) glass. J Therm Anal Calorim. 2015;119:2171–8.CrossRefGoogle Scholar
  16. 16.
    Lasocka M. Application of Piloyan’s method in the study of the energetics of a glass-to-crystal transition. J Therm Anal. 1979;16:197–200.CrossRefGoogle Scholar
  17. 17.
    Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1956;57:217–21.CrossRefGoogle Scholar
  18. 18.
    Bainova AB, Sanditov DS. Dependence of the fluctuation free volume of amorphous substances on the cooling rate. J Phys Chem. 2002;28(3):189–90.Google Scholar
  19. 19.
    Kaur G, Pandey OP, Singh K. Chemical compatibility between MgO–SiO2–B2O3–La2O3 glass sealant and low, high temperature electrolytes for solid oxide fuel cell applications. Int J Hydrog Energy. 2012;37(22):17235–44.CrossRefGoogle Scholar
  20. 20.
    Kaur G, Pandey OP, Singh K. Glass stability and effect of heat-treatment duration on chemical interaction between calcium lanthanum borosilicate glass sealant and electrolytes. J Electrochem Soc. 2012;159(11):F717–24.CrossRefGoogle Scholar
  21. 21.
    Kaur G, Pandey OP, Singh K. Microstructural analysis of interfaces between lanthanum contained glass and two different electrolytes for SOFC applications. Fuel Cells. 2012;12(15):739–48.CrossRefGoogle Scholar
  22. 22.
    Frenkel YI. Kinetic theory of liquids. Moscow: Nauka; 1975.Google Scholar
  23. 23.
    Raghvan V. Materials science and engineering. 5th ed. 2008.Google Scholar
  24. 24.
    Cheng K. Criterion for evaluating the thermal stability of glasses. J Phys Chem B. 1999;103:8272–6.CrossRefGoogle Scholar
  25. 25.
    Petrovic AFK. Theoretical analysis of relative changes of the Hruby, Weinberg, and Lu–Liu glass stability parameters with application on some oxide and chalcogenide glasses. Thermochim Acta. 2010;499:54–60.CrossRefGoogle Scholar
  26. 26.
    Cabral AA, Fredericci C, Zanotto ED. A test of the Hrubÿ parameter to estimate glass-forming ability. J Non-Cryst Solids. 1997;219:182–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Department of Applied SciencesABES Institute of TechnologyGhaziabadIndia
  2. 2.School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations