Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 3, pp 2013–2020 | Cite as

The effect of internal lipids on the water sorption kinetics of keratinised tissues

  • C. BarbaEmail author
  • M. Martí
  • J. Carilla
  • A. M. Manich
  • L. Coderch


Water has a large influence on the properties of keratinised tissues. The water diffusion properties of keratinised tissues are known to be governed by the cell membrane complex, which is mainly composed of internal lipids. The main aim of this work was to characterise the differences in the water sorption and desorption behaviour of human hair and stratum corneum (SC) both with and without internal lipids. Absorption and desorption curves were obtained using a thermogravimetric balance equipped with a controlled humidity chamber. The results demonstrate that the role of the intercellular lipids in the SC is more marked than in hair, which is likely due to the greater amount of lipids present in its structure. Therefore, lipid structures in the SC are essential both to prevent changes in the water-holding capacity of the skin and to maintain the water permeability of the SC.


Stratum corneum Human hair Internal lipids Water diffusion 



The authors wish to thank the Spanish National Projects (Ministerio de Educación y Ciencia) CTQ2013-44998-P and 2014 SGR 1325 (AGAUR) for financial support.


  1. 1.
    Rivett D. Structural lipids of the wool fibre. Wool Sci Rev. 1991;67:1–25.Google Scholar
  2. 2.
    Clarence R. Chemical and physical behaviour of human hair. New York: Springer; 2012.Google Scholar
  3. 3.
    Coderch L, Bondía I, Fonollosa J, Méndez S, Parra J. Ceramides from wool: analysis and structure. IFSCC Mag. 2003;6:117–23.Google Scholar
  4. 4.
    Schaefer H, Redemeier TE. Skin barrier: principles in percutaneous penetration. Basel: Karger; 1996. p. 55–8.Google Scholar
  5. 5.
    Scürer NY. The biochemistry and function of stratum corneum lipids. Adv Lipid Res. 1991;24:27–56.Google Scholar
  6. 6.
    Kerscher M, Korting H, Scharfer-Korting M. Skin ceramides: structure and function. Eur J Dermatol. 1991;1:39–43.Google Scholar
  7. 7.
    Coderch L, Soriano S, de la Maza A, Erra P, Parra JL. Chromatographic characterization of internal polar lipids from wool. J Am Oil Chem Soc. 1995;72:1715–20.CrossRefGoogle Scholar
  8. 8.
    Elias PM, Friend DS. The permeability barrier in mammalian epidermis. J Cell Biol. 1975;65(1):180–91.CrossRefGoogle Scholar
  9. 9.
    Elias PM, Goerke J, Friend DS. Mammalian epidermal barrier layer lipids: composition and influence on structure. J Invest Dermatol. 1977;69(6):535–46.CrossRefGoogle Scholar
  10. 10.
    Elias PM. Lipids and the epidermal permeability barrier. Arch Dermatol Res. 1981;270(1):95–117.CrossRefGoogle Scholar
  11. 11.
    Petersen R. Ceramides: key components for skin protection. Cosmet Toilet. 1992;107:45–9.Google Scholar
  12. 12.
    Choi M, Maibach H. Role of ceramides in barrier function of healthy and diseased skin. Am J Clin Dermatol. 2005;6(4):215–33.CrossRefGoogle Scholar
  13. 13.
    Nishimura K, Nishino I, Inaoka Y, Kitada Y, Fukushima K. Interrelationship between the hair lipids and the hair moisture. Nippon Koshohin Kagakkaishi. 1989;13:134–9.Google Scholar
  14. 14.
    Barba C, Martí M, Carilla J, Manich A, Coderch L. Moisture sorption/desorption of protein fibres. Thermochim Acta. 2013;552:70–6.CrossRefGoogle Scholar
  15. 15.
    Manich AM, Maldonado F, Carilla J, Catalina M, Marsal A. Moisture adsorption/desorption kinetics of bovine hide powder. J Soc Leather Technol Chem. 2010;94:15–20.Google Scholar
  16. 16.
    Pierlot AP. Water in wool. Text Res J. 1999;69(2):97–103.CrossRefGoogle Scholar
  17. 17.
    Rosenbaum S. Solution of water in polymers: the keratin-water isotherm. J Polym Sci Part C Polym Symp. 1970;31(1):45–55.CrossRefGoogle Scholar
  18. 18.
    Timmermann EO. Multilayer sorption parameters: BET or GAB values? Colloids Surf A. 2003;220(1):235–60.CrossRefGoogle Scholar
  19. 19.
    Godin B, Touitou E. Transdermal skin delivery: predictions for humans fromin vivo, ex vivo and animal models. Adv Drug Deliv Rev. 2007;59:1152–61.CrossRefGoogle Scholar
  20. 20.
    Mothe CG, Mothe MG, Riga A, Alexander K. Thermal analysis of a model bio-membrane Human and snake skins. J Therm Anal Calorim. 2011;106:637–42. doi: 10.1007/s10973-011-1812-2.CrossRefGoogle Scholar
  21. 21.
    Hasanovic A, Winkler R, Resch GP, Valenta V. Modification of the conformational skin structure by treatment with liposomal formulations and its correlation to the penetration depth of aciclovir. Eur J Pharm Biopharm. 2011;79(1):76–81.CrossRefGoogle Scholar
  22. 22.
    Sekkat N, Guy R. Biological models to study skin permeation. Zurich: Wiley-VCH and VHCA; 2001.CrossRefGoogle Scholar
  23. 23.
    Barba C, Baratto A, Martia M, Semenzato A, Baratto G, Manich AM, Parra JL, Coderch L. Water sorption evaluation of stratum corneum. Thermochim Acta. 2014;583:43–8.CrossRefGoogle Scholar
  24. 24.
    Lopez O, Cocera M, Wertz PW, Lopez-Iglesias C, de la Maza A. New arrangement of proteins and lipids in the stratum corneum cornified envelope. Biochim Biophys Acta. 2007;1768(3):521–9.CrossRefGoogle Scholar
  25. 25.
    Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60(2):309–19.CrossRefGoogle Scholar
  26. 26.
    Anderson RB, Hall WK. Modifications of the Brunauer, Emmett and Teller Equation II1. J Am Chem Soc. 1948;70(5):1727–34.CrossRefGoogle Scholar
  27. 27.
    Vickerstaff T. The physical chemistry of dyeing. London: Oliver and Boid; 1954.Google Scholar
  28. 28.
    Mullen R, Donna L, Chen S, Koelmel D, Zhang G, Gillece T. Determination of physicochemical properties of delipidized hair. J Cosmet Sci. 2013;64:355–70.Google Scholar
  29. 29.
    Hill C, Norton A, Newman G. The water vapour sorption behaviour of natural fibers. J Appl Pol Sci. 2009;112:1524–37.CrossRefGoogle Scholar
  30. 30.
    Watt IJ. Determination of diffusion rates in swelling systems. Appl Polym Sci. 1964;8:2835–42.CrossRefGoogle Scholar
  31. 31.
    Heldman DR, Hall CW, Hedrick I. Vapor equilibrium relationships of dry milk. J Dairy Sci. 1965;48:845–52.CrossRefGoogle Scholar
  32. 32.
    Al-Muhtaseb AH, McMinn WAM, Magee TRA. Water sorption isotherms of starch powders part 1: mathematical description of experimental data. J Food Eng. 2004;61:297–307.CrossRefGoogle Scholar
  33. 33.
    Gelb L, Gubbins K. Characterization of porous glasses: simulation models, adsorption isotherms, and the Brunauer–Emmett–Teller analysis method. Langmuir. 1998;14:2097–111.CrossRefGoogle Scholar
  34. 34.
    Okubayashi S, Griesser UJ, Bechtold T. A kinetic study of moisture sorption and desorption on lyocell fibers. Carbohydr Polym. 2004;58(3):293–9.CrossRefGoogle Scholar
  35. 35.
    Ananthapadmanabhan KP, Moore DJ, Subramanyan K, Misra M, Meyer F. Cleansing without compromise: the impact of cleansers on the skin barrier and the technology of mild cleansing. Dermatol Ther. 2004;17(Suppl 1):16–25.CrossRefGoogle Scholar
  36. 36.
    Gabas AL, Oliveira WP, Telis-Romero J. Study of adsorption isotherms of green coconut pulp Estudo das isotermas de adsorção da polpa de coco verde. Food Sci Technol Campinas. 2013;33(1):68–74.CrossRefGoogle Scholar
  37. 37.
    Molina Filho L, Gonçalvesi A, Mauro M, Fraccareli E. Moisture sorption isotherms of fresh and blanched pumpkin (Cucurbita moschata) Isotermas de sorção de umidade de abóbora (Cucurbita moschata) fresca e branqueada. Technol Aliment Campinas. 2011;31(3):714–22.CrossRefGoogle Scholar
  38. 38.
    Alber C, Brandner BD, Björrklund S, Billsten S, Corkery RW, Engblom J. Effects of water gradients and use of urea on skin ultrastructure evaluated by confocal Raman microspectroscopy. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2013;11:2470–8.CrossRefGoogle Scholar
  39. 39.
    Nakazawa H, Ohta N, Hatta I. A possible regulation mechanism of water content in human stratum corneum via intercellular lipid matrix. Chem Phys Lipids. 2012;165(2):238–43.CrossRefGoogle Scholar
  40. 40.
    Björklund S, Andersson JM, Pham QD, Nowacka A, Topgaard D, Sparr E. Stratum corneum molecular mobility in the presence of natural moisturizers. Soft Matters. 2014;10:4535–46.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • C. Barba
    • 1
    Email author
  • M. Martí
    • 1
  • J. Carilla
    • 1
  • A. M. Manich
    • 1
  • L. Coderch
    • 1
  1. 1.Department of Chemicals and Surfactants TechnologyInstitute of Advanced Chemistry of CataloniaBarcelonaSpain

Personalised recommendations